Abstract
Let t be an integer ≥ 3 such that t ≡ 1 mod 4. The absolute irreducibility of the polynomial \(\phi _{t}(x, y) = \frac {x^{t} + y^{t} + 1 + (x + y + 1)^{t}}{(x + y)(x + 1)(y + 1)}\) (over \(\mathbb {F}_{2}\)) plays an important role in the study of APN functions. We prove that this polynomial is absolutely irreducible under the assumptions that the largest odd integer which divides t − 1 is large enough and can not be written in a specific form.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aubry, Y., McGuire, G., Rodier, F.: A few more functions that are not APN infinitely often Finite fields: Theory and applications, Contemporary Mathematics 518, pp. 23–31. American Mathematical Society, Providence, RI (2010)
Berger, T., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear functions over \(F^n_{2}\). IEEE Trans. Inf. Theory 52(9), 4160–4170 (2006)
Bluher, A. W.: On existence of Budaghyan-Carlet APN hexanomials. Finite Fields Appl. 24, 118–123 (2013)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997)
Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14 (3), 703–714 (2008)
Bracken, C., Tan, C. H., Tan, Y.: On a class of quadratic polynomials with no zeros and its application to APN functions. Finite Fields Appl. 25, 26–36 (2014)
Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An infinite class of quadratic APN functions which are not equivalent to power mappings. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 2637–2641 (2006)
Byrne, E., McGuire, G.: On the non-existence of quadratic APN and crooked functions on finite fields. In: Proceedings of the Workshop on Coding and Cryptography, WCC, pp. 316–324 (2005)
Caullery, F.: A new large class of functions not APN infinitely often. Des. Codes Cryptogr. 73(2), 601–614 (2014)
Caullery, F.: Polynomials over finite fields for cryptography. Ph.D. thesis, Université d’Aix-Marseille. http://www.theses.fr/2014AIXM4013 (2014)
Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)
Dillon, J.F.: APN Polynomials: An update. Invited talk at Fq9 the 9th International Conference on Finite Fields and their Applications (2009)
Delgado, M., Janwa, H.: On the conjecture on APN functions. arXiv:1207.5528 [cs.IT]
Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)
Férard, E.: On the irreducibility of the hyperplane sections of Fermat varieties in \(\mathbb {P}^{3}\) in characteristic 2. Adv. Math. Commun. 8(4), 497–509 (2014)
Férard, E.: A infinite class of Kasami functions that are not APN infinitely often. Submitted to AGCT 15
Férard, E., Oyono, R., Rodier, F.: Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents Arithmetic, geometry, cryptography and coding theory, Contemporary Mathematics, 574, pp. 27–36. American Mathematical Society, Providence, RI (2012)
Férard, E., Rodier, F.: Non linéarité des fonctions booléennes données par des polynômes de degré binaire 3 définies sur \(\mathbb {F}_2^{m}\) avec m pair [Nonlinearity of Boolean functions given by polynomials of binary degree 3 defined on \(\mathbb {F}_2^{m}\) with m even] Arithmetic, geometry, cryptography and coding theory 2009, Contemporary Mathematics, 521, pp. 41–53. American Mathematical Society, Providence, RI (2010)
Férard, E., Rodier, F.: Non linéarité des fonctions booléennes données par des traces de polynômes de degré binaire 3 [Nonlinearity of Boolean functions given by traces of polynomials of binary degree 3]. Algebraic geometry and its applications, Series Number Theory Applications, 5, pp. 388–409. World Scientific Publications, Hackensack, NJ (2008)
Hernando, F., McGuire, G.: Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebra 343, 78–92 (2011)
Fulton, W.: Algebraic curves. Benjamin New York (1969)
Janwa, H., Wilson, R.M.: Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proceedings AAECC-10 (G. Cohen, T. Mora and O. Moreno Eds.), Lecture Notes in Computer Science, vol. 673, pp. 180194. Springer-Verlag, NewYork/Berlin (1993)
Janwa, H., McGuire, G., Wilson, R.M.: Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2). J. Algebra 178, 665–676 (1995)
Jedlicka, D.: APN monomials over G F(2n) for infinitely many n. Finite Fields Appl. 13(4), 1006–1028 (2007)
Lucas, E.: Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1, 197–240, 289–321 (1878)
Nyberg, K.: Differentially uniform mappings for cryptography Advances in cryptology—Eurocrypt ’93 (Lofthus, 1993), Lecture Notes in Computer Science, vol. 765, pp. 55–64. Springer, Berlin (1994)
Rodier, F.: Bornes sur le degré des polynômes presque parfaitement non-linéaires Arithmetic, Geometry, Cryptography and Coding Theory, Contemporary Mathematics 487, pp. 169–181. American Mathematical Society, Providence, RI (2009)
Rodier, F.: Functions of degree 4e that are not APN infinitely often. Cryptogr. Commun. 3, 227–240 (2011)
Stein, W.A., et al.: Sage Mathematics Software (Version 4.8) The Sage Development Team. http://www.sagemath.org (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Férard, E. On the irreducibility of the hyperplane sections of Fermat varieties in \(\mathbb {P}^{3}\) in characteristic 2. II. Cryptogr. Commun. 9, 749–767 (2017). https://doi.org/10.1007/s12095-017-0213-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-017-0213-1