Abstract
In this study, we consider the finite (not necessary commutative) chain ring \(\mathcal {R}:=\mathbb {F}_{p^{m}}[u,\theta ]/{\left < u^{2} \right >}\), where θ is an automorphism of \(\mathbb {F}_{p^{m}}\), and completely explore the structure of left and right cyclic codes of any length N over \(\mathcal {R}\), that is, left and right ideals of the ring \(\mathcal {S}:=\mathcal {R}[x]/{\left < x^{N}-1 \right >}\). For a left (right) cyclic code, we determine the structure of its right (left) dual. Using the fact that self-dual codes are bimodules, we discuss on self-dual cyclic codes over \(\mathcal {R}\). Finally, we study Gray images of cyclic codes over \(\mathcal {R}\) and as some examples, three linear codes over \(\mathbb {F}_{4}\) with the parameters of the best known ones, but with different weight distributions, are obtained as the Gray images of cyclic codes over \(\mathcal {R}\).
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Abualrub, T., Siap, I.: Cyclic codes over the rings \(\mathbb {Z}_{2} + u\mathbb {Z}_{2}\) and \(\mathbb {Z}_{2} + u\mathbb {Z}_{2} + u^{2}\mathbb {Z}_{2}\). Des. Codes Crypt. 42, 273–287 (2007)
Alahmadi, A., Soboui, H., Sole, P., Yemen, O.: Cyclic codes over \(M_{2}(\mathbb {F}_{2})\). J. Franklin Inst. 350, 2837–2847 (2013)
Blackford, T.: Negacyclic codes over \(\mathbb {Z}_{4}\) of even length. IEEE Trans. Inform. Theory 49, 1417–1424 (2003)
Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb {F}_{2}+u\mathbb {F}_{2}\). IEEE Trans. Inform. Theory 45, 1250–1255 (1999)
Cayrel, P., Chabot, C., Nacer, A.: Quasi-cyclic codes as codes over ring of matrices. Finite Fields Appl. 16, 100–115 (2010)
Dinh, H.Q.: Constacyclic codes of length 2e over Galois extention rings of \(\mathbb {F}_{2}+u\mathbb {F}_{2}\). IEEE Trans. Inform. Theory 55, 1730–1740 (2009)
Dinh, H.Q.: Constacyclic codes of length p e over \(\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}\). Journal of Algebra 324, 940–950 (2010)
Dinh, H.Q., Lopez-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)
Dougherty, S.T., Leroy, A.: Euclidean self-dual codes over non-commutative Frobenius rings. AAECC 27, 185–203 (2016)
Dougherty, S.T., Park, Y.H.: On modular cyclic codes. Finite Fields Appl. 13, 31–57 (2007)
Grassl, M.: Bounds on the minimum distances of linear codes. available at http://www.codetables.de, accessed July 03, 2016
Gulliver, T. A., Harada, M.: Codes over \(\mathbb {F}_{3}+u\mathbb {F}_{3}\) and improvements to the bounds on ternary linear codes. Des. Codes Crypt. 22, 89–96 (2001)
Karadeniz, S., Yildiz, B.: New extremal binary self-dual codes of length 68 from R 2-lifts of binary self-dual codes. Adv. Math. Commun. 7, 219–229 (2013)
Kaya, A., Yildiz, B., Siap, I.: Quadratic residue codes over \(\mathbb {F}_{p}+v\mathbb {F}_{p}+\) and their Gray images. J. Pure Appl. Sci. 218, 1999–2011 (2014)
Kiah, H.M., Leung, K.H., Ling, S.: Cyclic codes over G R(p 2, m) of length p k. Finite Fields Appl. 14, 834–846 (2008)
Kiah, H.M., Leung, K.H., Ling, S.: A note on cyclic codes over G R(p 2, m) of length p k. Des. Codes Crypt. 63, 105–112 (2012)
MacWilliams, F.J., Odlyzko, A.M., Sloane, N.J.A., Ward, H.N.: Self-dual codes over GF(4). J. Combin. Theory Ser. A 25, 288–318 (1978)
McDonald, B.R.: Finite Rings with Identity. Dekker, New York (1974)
Nechaev, A.A., Mikhailov, D.A.: Canonical generating system of a monic polynomial ideal over a commutative artinian chain ring. Discrete Math. Appl. 11, 545–586 (2001)
Raka, M., Kathuri, L., Goyal, M.: (1 − 2u 3)-Constacyclic codes and quadratic residue codes over \(\mathbb {F}_{p}[u]/{\left <u^{4}-u \right >}\). Cryptogr. Commun. doi:10.1007/s12095-016-0184-7
Salagean, A.: Repeated-root cyclic and negacyclic codes over a finite chain ring. Discret. Appl. Math. 154, 413–419 (2006)
Sobhani, R., Mollakarimi, M.: Some results on cyclic codes over R 2, m . Turk. J. Math. 37, 1061–1074 (2013)
Sobhani, R., Esmaeili, M.: Cyclic and negacyclic codes over the Galois ring G R(p 2, m). Discret. Appl. Math. 157, 2892–2903 (2009)
Sobhani, R., Esmaeili, M.: A note on cyclic codes over G R(p 2, m) of length p k. Finite Fields Appl. 15, 387–391 (2009)
Yildiz, B., Karadeniz, S.: Linear codes over \(\mathbb {F}_{2}+u\mathbb {F}_{2}+v\mathbb {F}_{2}+uv\mathbb {F}_{2}\). Des. Codes Crypt. 54, 61–81 (2010)
Yildiz, B., Karadeniz, S.: Cyclic codes over \(\mathbb {F}_{2}+\mathbb {F}_{2}+v\mathbb {F}_{2}+uv\mathbb {F}_{2}\). Des. Codes Crypt. 58, 221–234 (2011)
Acknowledgments
The author would like to thank anonymous referee for his (her) careful reading of this paper and invaluable comments. This research was in part supported by a grant from IPM (No. 94050080).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sobhani, R. Cyclic codes over a non-commutative finite chain ring. Cryptogr. Commun. 10, 519–530 (2018). https://doi.org/10.1007/s12095-017-0238-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-017-0238-5