Skip to main content
Log in

On ideal t-tuple distribution of filtering de Bruijn sequence generators

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

A binary de Bruijn sequence is a sequence of period 2n in which every n-tuple occurs exactly once in one period. A de Bruijn sequence is attractive because of having good statistical properties such as long period, balance, high linear complexity and ideal n-tuple distribution. A nonlinear feedback shift register (NLFSR) can be used to generate a de Bruijn sequence. A filtering de Bruijn sequence generator (FDBG) is an NLFSR-based filtering generator constructed by applying a filter function to the internal state of the NLFSR generating a de Bruijn sequence. If the filtering function is balanced, then an FDBG inherits the properties long period, balance, and the lower bound of linear complexity, but its ideal t-tuple distribution property is unknown. In this paper we study ideal t-tuple distribution of filtering de Bruijn (DB) sequence generators. First, we present a construction of a q-ary de Bruijn sequence from a binary de Bruijn sequence. Then, we describe the construction of the FDBG and investigate the ideal t-tuple distribution for two types of the FDBGs. The conditions on the filtering functions for having the ideal t-tuple distribution in the filtering sequences are presented. Finally, we perform an experiment on FDBGs with WG transformations as filtering functions to validate our result and find filtering functions with good cryptographic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alhakim, A., Akinwande, M.: A recursive construction of nonbinary de bruijn sequences. Des. Codes Cryptogr. 60(2), 155–169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, C., Zeng, X., Helleseth, T., Li, C., Hu, L.: The properties of a class of linear fsrs and their applications to the construction of nonlinear fsrs. IEEE Trans. Inf. Theory 60(5), 3052–3061 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, C., Zeng, X., Li, C., Helleseth, T.: A class of de bruijn sequences. IEEE Trans. Inf. Theory 60(12), 7955–7969 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canteaut, A.: Analysis and Design of Symmetric Ciphers. Habilitation for Directing Theses University of Paris 6 (2006)

  5. Chan, A. H., Games, R. A., Key, E. L.: On the complexities of de bruijn sequences. J. Comb. Theory A 33(3), 233–246 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Bruijn, N. G.: A combinatorial problem. Proc. Koninklijke Nederlandse Akademie v Wetenschappen 49, 758–764 (1946)

    MATH  Google Scholar 

  7. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fuster-Sabater, A., Caballero-Gil, P.: On the linear complexity of non-linearly filtered pn-sequences. In: Advances in Cryptology-ASIACRYPT’94. LNCS, vol. 917, pp 80–90. Springer, Berlin (1995)

    Chapter  Google Scholar 

  9. Golic, J.: On the security of nonlinear filter generators. In: The 3rd International Workshop on Fast Software Encryption. LNCS, vol. 1039, pp 173–188. Springer, Berlin (1996)

    Google Scholar 

  10. Golomb, S. W.: On the classification of balanced binary sequences of period 2n - 1. IEEE Trans. Inf. Theory 26(6), 730–732 (1980)

    Article  MATH  Google Scholar 

  11. Golomb, S. W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981)

    MATH  Google Scholar 

  12. Golomb, S. W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  13. Gong, G., Youssef, A.: Cryptographic properties of the welch-gong transformation sequence generators. IEEE Trans. Inf. Theory 48(11), 2837–2846 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Good, I. J.: Normal recurring decimals. J. Lon. Math. Soc. 21(3), 167–169 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  15. Key, E. L.: An analysis of the structure and complexity of nonlinear binary sequence generators. IEEE Trans. Inf. Theory 22, 732–736 (1976)

    Article  MATH  Google Scholar 

  16. Mandal, K., Gong, G.: Cryptographically strong de bruijn sequences with large periods. In: Knudsen, L. R., Wu, H (eds.) SAC 2012. LNCS, vol. 7707, pp 104–118. Springer, Heidelberg (2012)

    Google Scholar 

  17. Mandal, K., Gong, G.: Feedback reconstruction and implementations of pseudorandom number generators from composited de bruijn sequences. IEEE Trans. Comput. 65(9), 2725–2738 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mandal, K., Gong, G.: Generating good span n sequences using orthogonal functions in nonlinear feedback shift registers. In: Open Problems in Mathematics and Computational Science, pp 127–162. Springer, Cham (2014)

    Google Scholar 

  19. Massey, J. L., Serconek, S.: A fourier transform approach to the linear complexity of nonlinearly filtered sequences. In: Advances in Cryptology-CRYPTO’94. LNCS, vol. 839, pp. 332–340. Springer-Verlag (1994)

  20. Mykkeltveit, J., Szmidt, J.: On cross joining de Bruijn sequences. Contemp. Math. 632, 333–344 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Rueppel, R. A.: Analysis and Design of Stream Ciphers. Springer-Verlag, New York (1986)

    Book  MATH  Google Scholar 

  22. Siegenthaler, T., Forré, R., Kleiner, A. W.: Generation of binary sequences with controllable complexity and ideal r-tupel distribution. In: Chaum, D., Price, W. (eds.) Advances in Cryptology – EUROCRYPT’87. LNCS, vol. 304. Springer, Berlin (1988)

    Google Scholar 

  23. National institute of standards and technology. Digital signature standard (DSS), federal information processing standards publication, FIPS PUB 186-2, Reaffirmed (January 27, 2000)

  24. Yang, J. -H., Dai, Z. -D.: Construction of m-ary de bruijn sequences (extended abstract). In: Advances in Cryptology-AUSCRYPT’92. LNCS, vol. 718, pp. 357–363. Springer-Verlag (1993)

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable suggestions to improve the quality of the paper. The research is supported by NSERC Discovery Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalikinkar Mandal.

Additional information

This article is part of the Topical Collection on Special Issue on Sequences and Their Applications

Appendix: The WG transformation

Appendix: The WG transformation

Let \(\mathbb {F}_{2}\) be the Galois field with two elements and \(\mathbb {F}_{2^{s}}\) be a finite field with 2s elements. Let \(\text {Tr}(x) = x + x^{2} + {\cdots } + x^{2^{s-1}}, x \in \mathbb {F}_{2^{s}}\) be the trace function defined from \(\mathbb {F}_{2^{s}}\) to \(\mathbb {F}_{2}\). Let s be a positive integer with s ≢ 0 mod 3 and 3k ≡ 1 mod s for some integer k. The Welch-Gong (WG) transformation from \(\mathbb {F}_{2^{s}}\) to \(\mathbb {F}_{2}\) with decimation d [12, 13] is defined by

$$f(x^{d}) = \text{Tr}(h(x^{d}+1)+1)$$

where \(h(x) = x + x^{q_{1}} + x^{q_{2}} + x^{q_{3}} + x^{q_{4}}\) and \(q_{1} = 2^{k} + 1, q_{2} = 2^{2k} + 2^{k} + 1, q_{3} = 2^{2k} - 2^{k} + 1, q_{4} = 2^{2k} + 2^{k} - 1\) and d is a coset leader co-prime to 2s − 1. Cryptographic properties of WG transformations have been studied in [13]. For the details, the reader is referred to [13].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, K., Yang, B., Gong, G. et al. On ideal t-tuple distribution of filtering de Bruijn sequence generators. Cryptogr. Commun. 10, 629–641 (2018). https://doi.org/10.1007/s12095-017-0248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-017-0248-3

Keywords

Mathematics Subject Classification (2010)

Navigation