Skip to main content

Advertisement

Log in

Designed distances and parameters of new LCD BCH codes over finite fields

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Let \(\mathbb {F}_{q}\) be the finite field of q elements and n = qm − 1 with m a positive integer. In this paper we construct a class of BCH and LCD BCH codes of length n over \(\mathbb {F}_{q}\) and investigate their dimensions and designed distance. Our results show that the designed distances of BCH and LCD BCH codes in this paper are larger than those in [11, Theorems 7, 10, 18, and 22]. It is viewed as a generalized result of [11].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  2. Charpin, P.: On a class of primitive BCH-codes. IEEE Trans. Inf. Theory 36(1), 222–228 (1990)

    Article  MathSciNet  Google Scholar 

  3. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ding, C.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61(10), 5322–5330 (2015)

    Article  MathSciNet  Google Scholar 

  5. Ding, C., Du, X., Zhou, Z.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf. Theory 61(5), 2351–2356 (2015)

    Article  MathSciNet  Google Scholar 

  6. Dougherty, S.T., Kim, J. -L., ÖZkaya, B., Sok, L., Solè, P.: The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4, 116–128 (2017)

    Article  MathSciNet  Google Scholar 

  7. Dianwu, Y., Zhengming, H.: On the dimension and minimum distance of BCH codes over GF(q). J. Electron. 13(3), 216–221 (1996)

    Google Scholar 

  8. Hou, X., Oggier, F.: On LCD codes and lattices. In: Proceedings of IEEE Int. Symp. Inf. Theory, pp. 1501–1505 (2016)

  9. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  10. Li, C., Ding, C., Li, S.: LCD Cyclic codes over finite field. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017)

    Article  MathSciNet  Google Scholar 

  11. Li, S., Li, C., Ding, C.: Two Families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Liu, H., Ding, C., Li, C.: Dimensions of three types of BCH codes over GF(q). Discrete Math. 340, 1910–1927 (2017)

    Article  MathSciNet  Google Scholar 

  13. Massey, J.L.: Reversible codes. Inf. Control. 7(3), 369–380 (1964)

    Article  MathSciNet  Google Scholar 

  14. Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106(/107), 337–342 (1992)

    Article  MathSciNet  Google Scholar 

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, North- Holland (1977)

    MATH  Google Scholar 

  16. Sendrier, N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discret. Math. 285, 345–347 (2004)

    Article  MathSciNet  Google Scholar 

  17. Tzeng, K.K., Hartmann, C.R.P.: On the minimum distance of certain reversible cyclic codes. IEEE Trans. Inf. Theory 16, 644–646 (1970)

    Article  MathSciNet  Google Scholar 

  18. Yan, H., Liu, H., Li, C., Yang, S.: Parameters of LCD BCH codes with two lengths. Adv. Math. Commun. 12(3), 579–594 (2018)

    Article  MathSciNet  Google Scholar 

  19. Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. Discret. Math. 126, 391–393 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The paper was supported by National Natural Science Foundation of China under Grants 11601475, 61772015 and Foundation of Science and Technology on Information Assurance Labo- ratory under Grant KJ-17-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwei Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yue, Q. & Wu, Y. Designed distances and parameters of new LCD BCH codes over finite fields. Cryptogr. Commun. 12, 147–163 (2020). https://doi.org/10.1007/s12095-019-00385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-019-00385-3

Keywords

Mathematics Subject Classification (2010)