Skip to main content

Hashing to elliptic curves of j-invariant 1728

  • SI: From Mathematics to Embedded Devices
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

This article generalizes the simplified Shallue–van de Woestijne–Ulas (SWU) method of a deterministic finite field mapping \(h\!: \mathbb {F}_{q} \to E_{a}(\mathbb {F}_{q})\) to the case of any elliptic \(\mathbb {F}_{q}\)-curve Ea : y2 = x3ax of j-invariant 1728. In comparison with the (classical) SWU method the simplified SWU method allows to avoid one quadratic residuosity test in the field \(\mathbb {F}_{q}\), which is a quite painful operation in cryptography with regard to timing attacks. More precisely, in order to derive h we obtain a rational \(\mathbb {F}_{q}\)-curve C (and its explicit quite simple proper \(\mathbb {F}_{q}\)-parametrization) on the Kummer surface \(K^{\prime }\) associated with the direct product \({E_{a}} \times {E_{a}^{\prime }}\), where \(E_{a}^{\prime }\) is the quadratic \(\mathbb {F}_{q}\)-twist of Ea. Our approach of finding C is based on the fact that every curve Ea has a vertical \(\mathbb {F}_{q^{2}}\)-isogeny of degree 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.: Pairing-friendly curves IETF Secretariat (2020)

  2. El Mrabet, N., Joye, M.: Guide to pairing-based cryptography — New York.: Chapman and Hall (2016)

  3. Faz-Hernandez, A., et al.: Hashing to elliptic curves IETF Secretariat (2020)

  4. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)

    Article  MathSciNet  Google Scholar 

  5. Icart, T.: How to hash into elliptic curves. 29th Annual international cryptology conference, p. 303–316 (2009)

  6. Bernstein, D., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve points indistinguishable from uniform random strings. Conference on Computer & Commun Security, pp. 967–980 (2013)

  7. Skałba, M.: Points on elliptic curves over finite fields. Acta Arithmetica 117, 293–301 (2005)

    Article  MathSciNet  Google Scholar 

  8. Mordell, L.: Diophantine equations — London.: Academic Press (1969)

  9. Shallue, A., van de Woestijne, C.: Construction of rational points on elliptic curves over finite fields. 7th International Algorithmic Number Theory Symposium, P. 510–524 (2006)

  10. Sendra, J., Winkler, F., Pérez-Díaz, S.: Rational algebraic curves: A computer algebra approach. Springer, Berlin (2008)

    Book  Google Scholar 

  11. Van der Geer, G., Katsura, T.: On the height of Calabi–Yau varieties in positive characteristic. Doc. Math. 8(1), 97–113 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Andreatta, M., Wiśniewski, J.: On the Kummer construction. Revista Matemática Complutense 23(1), 191–215 (2010)

    Article  MathSciNet  Google Scholar 

  13. Cynk, S., Schütt, M.: Generalised Kummer constructions and Weil restrictions. J. Num. Theory 129(8), 1965–1975 (2009)

    Article  MathSciNet  Google Scholar 

  14. Donten, M.: On Kummer 3-folds. Revista Matemática Complutense 24(2), 465–492 (2011)

    Article  MathSciNet  Google Scholar 

  15. Kollár, J., Larsen, M.: Quotients of Calabi–Yau varieties. Algebra, arithmetic, and geometry. Birkhäuser Boston, pp. 179–211 (2009)

  16. Debarre, O.: Higher-dimensional algebraic geometry. Springer, Berlin (2001)

    Book  Google Scholar 

  17. Voisin, C.: Miroir set involutions sur les surfaces K3. Astérisque 218, 273–323 (1993)

    MATH  Google Scholar 

  18. Bogomolov, F., Tschinkel, Y.: Rational curves and points on K3 surfaces. Am. J. Math. 127(4), 825–835 (2005)

    Article  MathSciNet  Google Scholar 

  19. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. 30th Annual Cryptology Conference, pp. 237–254 (2010)

  20. Mestre, J. -F.: Rang de courbes elliptiques d’invariant donné. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 314 (12), 919–922 (1992)

    MATH  Google Scholar 

  21. Satgé, P.: Une construction de courbes k-rationnelles sur les surfaces de Kummer d’un produit de courbes de genre 1. Rational points on algebraic varieties. Birkhäuser Basel, pp. 313–334 (2001)

  22. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bulletin of the Polish Academy of Sciences. Mathematics 55(2), 97–104 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Kuwata, M., Wang, L.: Topology of rational points on isotrivial elliptic surfaces. Int. Math. Res. Not. 1993(4), 113–123 (1993)

    Article  MathSciNet  Google Scholar 

  24. Wahby, R., Boneh, D.: Fast and simple constant-time hashing to the BLS12-381 elliptic curve. IACR Trans. on Crypto Hardware and Embedded Systems, pp. 154–179 (2019)

  25. Kachisa, E., Schaefer, E., Scott, M.: Constructing Brezing–Weng pairing-friendly elliptic curves using elements in the cyclotomic field. 2nd Internat, Conf. on Pairing-Based Crypto, pp. 126–135 (2008)

  26. Barbulescu, R., El Mrabet, N., Ghammam, L.: A taxonomy of pairings, their security, their complexity IACR Cryptology ePrint Archive (2019)

  27. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryptol. pp. 1–39 (2018)

  28. Ghammam, L., Fouotsa, E.: Adequate elliptic curves for computing the product of n pairings. International workshop on the arithmetic of finite fields, pp. 36–53 (2016)

  29. Gorchinskiy, S., Shramov, C.: Unramified Brauer group and its applications — Providence.: American Mathematical Society (2018)

  30. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. Chapman & Hall, Boca Raton (2006)

    MATH  Google Scholar 

  31. Milne, J.: Abelian varieties. Arithmetic geometry, pp. 103–150 (1986)

  32. Hartshorne, R.: Algebraic geometry. Springer, Berlin (1977)

    Book  Google Scholar 

  33. Hunt, B.: The geometry of some special arithmetic quotients. Springer, Berlin (1996)

    Book  Google Scholar 

  34. Huybrechts, D.: Lectures on K3 surfaces. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  35. Ulmer, D.: Elliptic curves over function fields. Arithmetic of L-functions, pp. 211–280 (2011)

  36. Shioda, T.: Supersingular K3 surfaces. Algebraic Geometry, pp. 564–591 (1979)

  37. Hirschfeld, J., Korchmáros, G., Torres, F.: Algebraic curves over a finite field. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  38. Gaudry, P., Schost, É.: On the invariants of the quotients of the Jacobian of a curve of genus 2. 14th Inter. Symp. on Applied Algebra, Algebraic Algorithms, and Error-Correct Codes, pp. 373–386 (2001)

  39. Koshelev, D.: Non-split toric codes. Probl. Inf. Transm. 55(2), 124–144 (2019)

    Article  MathSciNet  Google Scholar 

  40. Silverman, J.: The arithmetic of elliptic curves. Springer, New York (2009)

    Book  Google Scholar 

  41. Galbraith, S.: Mathematics of public key cryptography. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  42. Koshelev, D. Magma code. https://github.com/dishport/Hashing-to-elliptic-curves-of-j-invariant-1728

  43. Aubry, Y., Perret, M.: A Weil theorem for singular curves. Arithmetic, Geometry and Coding Theory (AGCT-4), pp. 1–7 (1993)

  44. Ireland, K., Rosen, M.: A classical introduction to modern number theory. Springer, New York (1990)

    Book  Google Scholar 

  45. Fouque, P.-A., Tibouchi, M.: Estimating the size of the image of deterministic hash functions to elliptic curves. 1st Inter, Conference on Crypto and Information Security in Latin America, pp. 81–91 (2010)

Download references

Acknowledgements

The author expresses his deep gratitude to his scientic advisor M. Tsfasman and thanks K. Loginov, K. Shramov for their help and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii Koshelev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Web page: https://www.researchgate.net/profile/Dimitri-Koshelev

This work was supported by a public grant as part of the FMJH project

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 38.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshelev, D. Hashing to elliptic curves of j-invariant 1728. Cryptogr. Commun. 13, 479–494 (2021). https://doi.org/10.1007/s12095-021-00478-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00478-y

Keywords

Mathematics Subject Classification 2010