Abstract
For an odd prime p and q = pr, this paper deals with LCD codes obtained from cyclic codes of length n over a finite commutative non-chain ring \(\mathcal {R}=\mathbb {F}_{q}[u,v]/\langle u^{2}-\alpha u,v^{2}-1, uv-vu\rangle \) where α is a non-zero element in \(\mathbb {F}_{q}\). Initially, we impose certain conditions on the generator polynomials of cyclic codes when \(\gcd (n,p)=1\) and \(\gcd (n,p)\neq 1\), respectively so that these codes become LCD. Then, by defining a Gray map ψ, we show that the Gray image of an LCD code of length n over \(\mathcal {R}\) is an LCD code of length 4n over \(\mathbb {F}_{q}\). In this way, we obtain many optimal and best-known linear codes (BKLC) from the Gray images of both cyclic and LCD codes over \(\mathcal {R}\). Eventually, by applying the CSS construction on cyclic codes over \(\mathcal {R}\) that contain their Euclidean duals, we determine many superior quantum codes compared to the existing codes in the recent references.
Similar content being viewed by others
References
Abualrub, T., Siap, I.: Cyclic codes over the rings \(\mathbb {Z}_{2}+u\mathbb {Z}_{2}\) and \(\mathbb {Z}_{2}+u\mathbb {Z}_{2}+u^{2}\mathbb {Z}_{2}\). Des. Codes Cryptogr. 42(3), 273–287 (2007)
Abualrub, T., Ghrayeb, A., Oehmke, R.: A mass formula and rank of \(\mathbb {Z}_{4}\) cyclic codes of Length 2e. IEEE Trans. Inform. Theory 50(12), 3306–3312 (2004)
Alahmadi, A., Islam, H., Prakash, O., Solé, P., Alkenani, A., Muthana, N., Hijazi, R.: New quantum codes from constacyclic codes over a non-chain ring. Quantum Inf. Process. 20(2), Paper number: 60 17pp (2021)
Ashraf, M., Mohammad, G.: Quantum codes over \(\mathbb {F}_{p}\) from cyclic codes over \(\mathbb {F}_{p}[u,v]/\langle u^{2}-1,v^{3}-v,uv-vu\rangle \). Cryptogr. Commun. 11(2), 325–335 (2019)
Bhowmick, S., Fotue-Tabue, A., Martinez-Moro, E., Bandi, R., Bagchi, S.: Do non-free LCD codes over finite commutative Frobenius rings exist?. Des. Codes Cryptogr. 88(5), 825–840 (2020)
Bosma, W., Cannon, J.: Handbook of magma functions. University of sydney (1995)
Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb {F}_{2}+u\mathbb {F}_{2}\). IEEE Trans. Inform. Theory 45(4), 1250–1255 (1999)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998)
Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)
Carlet, C, Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86(11), 2605–2618 (2018)
Carlet, C, Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb {F}_{q}\) are equivalent to LCD codes for q > 3. IEEE Trans. Inform. Theory 64(4), 3010–3017 (2018)
Carlet, C., Mesnager, S., Tang, C., Qi, Y.: On σ-LCD codes. IEEE Trans. Inform. Theory 65(3), 1694–1704 (2019)
Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Chinnakum, W.: On the structure of cyclic codes over \(\mathbb {F}_{q}{{RS}}\) and applications in quantum and LCD codes constructions. IEEE Access 8, 18902–18914 (2020)
Dougherty, S.T., Kim, J. -L., Ozkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2-3), 116–128 (2017)
Durgun, Y.: On LCD codes over finite chain rings. Bull. Korean Math. Soc. 57(1), 37–50 (2020)
Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html
Esmaeili, M., Yari, S.: On complementary-dual quasi-cyclic codes. Finite Fields Appl. 15(3), 375–386 (2009)
Galvez, L., Kim, J.-L., Lee, N., Roe, Y.-G., Won, B.-S.: Some bounds on binary LCD codes. Cryptogr. Commun. 10(4), 719–728 (2018)
Gao, J.: Some results on linear codes over \(\mathbb {F}_{p}+u\mathbb {F}_{p}+u^{2}\mathbb {F}_{p}\). J. Appl. Math. Comput. 47(1-2), 473–485 (2015)
Gao, Y., Gao, J., Fu, F.W.: On Quantum codes from cyclic codes over the ring \(\mathbb {F}_{q} +v_{1}\mathbb {F}_{q}+\dots +v_{r}\mathbb {F}_{q}\). Appl. Algebra Engrg. Comm. Comput. 30(2), 161–174 (2019)
Grassl, M., Beth, T., Roetteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)
Grassl, M.: Code Tables: Bounds on the parameters of various types of codes available at http://www.codetables.de/ accessed on 20/04/2021
Hammons, A., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \(\mathbb {Z}_{4}\)-linearity of Kerdock, Preparata, Goethals, and Related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)
Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb {F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1,uv-vu,vw-wv,wu-uw\rangle \). J. Appl. Math. Comput. 60(1-2), 625–635 (2019)
Islam, H., Prakash, O., Bhunia, D.K.: Quantum codes obtained from constacyclic codes. Internat. J. Theoret. Phys. 58(11), 3945–3951 (2019)
Islam, H., Prakash, O., Verma, R.K.: Quantum codes from the cyclic codes over \(\mathbb {F}_{p}[v,w]/\langle v^{2}-1,w^{2}-1,vw-wv\rangle \). Springer Proc. Math. Stat. 307, 67–74 (2020)
Islam, H., Prakash, O., Verma, R.K.: A family of constacyclic codes over \(\mathbb {F}_{p^{m}}[v,w]/\langle v^{2}-1,w^{2}-1,vw-wv\rangle \). Int. J. Inf. Coding Theory 5(3/4), 198–210 (2020)
Islam, H., Prakash, O., Verma, R.K.: New quantum codes from constacyclic codes over the ring Rk,m. Adv. Math. Commun. https://doi.org/10.3934/amc.2020097 (2020)
Islam, H.: Prakash: New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf. Process. 19(9), Paper number: 319 17pp (2020)
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb {F}_{4}+u\mathbb {F}_{4}\). Int. J. Quantum Inf. 9(2), 689–700 (2011)
Li, C., Ding, C., Li, S.: LCD Cyclic codes over finite fields. IEEE Trans. Inform. Theory 63(7), 4344–4356 (2017)
Ling, S., Xing, C.: Coding Theory: A First Course. Cambridge University Press (2004)
Liu, X., Liu, H.: LCD Codes over finite chain rings. Finite Fields Appl. 34, 1–19 (2015)
Liu, X., Liu, H.: σ-LCD codes over finite chain rings. Des. Codes Cryptogr. 88(4), 727–746 (2020)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, North-Holland (1977)
Ma, F., Gao, J., Fu, F.W.: New non-binary quantum codes from constacyclic codes over \(\mathbb {F}_{p}[u,v]/\langle u^{2}-1,v^{2}-v,uv-vu\rangle \). Adv. Math. Commun. 13(2), 421–434 (2019)
Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106(/107), 337–342 (1992)
Qian, L., Shi, M., Solé, P.: On self-dual and LCD quasi-twisted codes of index two over a special chain ring. Cryptogr. Commun. 11(4), 717–734 (2019)
Sendrier, N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discrete Math. 285(1-3), 345–347 (2004)
Shi, M., Zhu, H., Qian, L., Sok, L., Solé, L.: On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}\). Cryptogr. Commun. 12(1), 53–70 (2020)
Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52(4), 2493–2496 (1995)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press., 124–134. https://doi.org/10.1109/sfcs.1994.365700 (1994)
Sok, L., Shi, M., Solé, P.: Construction of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018)
Yadav, S., Islam, H., Prakash, O., Solé, P.: Self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}+v\mathbb {F}_{q}.\) J. Appl. Math Comput. https://doi.org/10.1007/s12190-021-01499-9 (2021)
Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. Discret. Math. 126(1-3), 391–393 (1994)
Zhu, S., Wang, Y., Shi, M.: Some results on cyclic codes over \(\mathbb {F}_{2}+u\mathbb {F}_{2}\). IEEE Trans. Inform. Theory 56(4), 1680–1684 (2010)
Acknowledgements
The authors are thankful to the University Grants Commission (UGC), Govt. of India for financial support under Sr. No. 2121540952, Ref. No. 20/12/2015(ii)EU-V dated 31/08/2016 and Indian Institute of Technology Patna for providing research facilities. We would also like to thank Prof. Patrick Solé (University Aix-Marseille, Marseille, France) and Prof. Smriti Singh (IIT Patna, India) for their careful reading and suggestions. Also, the authors would like to thank the anonymous referee(s) and the Editor for their valuable comments to improve the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Islam, H., Prakash, O. Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring. Cryptogr. Commun. 14, 59–73 (2022). https://doi.org/10.1007/s12095-021-00516-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-021-00516-9