Skip to main content
Log in

Resolvable block designs in construction of approximate real MUBs that are sparse

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Several constructions of Mutually Unbiased Bases (MUBs) borrow tools from combinatorial objects. In this paper we focus on how one can construct Approximate Real MUBs (ARMUBs) with improved parameters using results from the domain of Resolvable Block Designs (RBDs). We first explain the generic idea of our strategy in relating the RBDs with MUBs/ARMUBs, which are sparse (the basis vectors have small number of non-zero co-ordinates). Then specific parameters are presented, for which we can obtain new classes and improve the existing results. To be specific, we present an infinite family of \(\lceil \sqrt {d}\rceil \) many ARMUBs for dimension d = q(q + 1), where q ≡ 3 mod 4 and it is a prime power, such that for any two vectors v1,v2 belonging to different bases, \(|\langle {v_{1}|v_{2}}\rangle | < \frac {2}{\sqrt {d}}\). We also demonstrate certain cases, such as d = sq2, where q is a prime power and sq ≡ 0 mod 4. These findings subsume and improve our earlier results in [Cryptogr. Commun. 13, 321-329, January 2021]. This present construction idea provides several infinite families of such objects, not known in the literature, which can find efficient applications in quantum information processing for the sparsity, apart from suggesting that parallel classes of RBDs are intimately linked with MUBs/ARMUBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar, E.A., Borkala, J.J., Mironowicz, P., Pawlowski, M.: Connections between mutually unbiased bases and quantum random access codes. Phys. Rev. Lett. 121, 050501 (2018)

    Article  Google Scholar 

  2. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34 (4), 512–528 (2002). https://doi.org/10.1007/s00453-002-0980-7. arXiv:quant-ph/0103162, Sep 2001

    Article  MathSciNet  Google Scholar 

  3. Boykin, P.O., Sitharam, M., Tarifi, M., Wocjan, P.: Real mutually unbiased bases. arXiv:quant-ph/0502024 (2005)

  4. Cameron, P.J., Seidel, J.J.: Quadratic forms over GF(2). Indag. Math. (Proc.) 76 (1), 1–8 (1973). https://doi.org/10.1016/1385-7258(73)90014-0

    Article  MathSciNet  Google Scholar 

  5. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2010). https://doi.org/10.1201/9781420010541

    Book  Google Scholar 

  6. Djokovic, D.Z.: Hadamard matrices of order 764 exist. Combinatorica 28(4), 487–489 (2008). https://doi.org/10.1007/s00493-008-2384-z. arXiv:math/0703312, Mar 2007

    Article  MathSciNet  Google Scholar 

  7. Durt, T., Englert, B.G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8(4), 535–640 (2010). https://doi.org/10.1142/S0219749910006502. arXiv:1004.3348, Oct 2010

    Article  Google Scholar 

  8. Hanani, H.: On resolvable balanced incomplete block designs. J. Comb. Theory Ser. A 17(3), 275–289 (1974). https://doi.org/10.1016/0097-3165(74)90093-4

    Article  MathSciNet  Google Scholar 

  9. Hedayat, A., Wallis, W.D.: Hadamard matrices and their applications. Inst. Math. Stat. Ann. Stat. 6(6), 1184–1238 (1978). https://doi.org/10.1214/aos/1176344370. JSTOR: http://www.jstor.org/stable/2958712

    MathSciNet  MATH  Google Scholar 

  10. Klappenecker, A., Rötteler, M., Shparlinski, I.E., Winterhof, A.: On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states. J. Math. Phys. 46 (8), 082104 (2005). https://doi.org/10.1063/1.1998831. arXiv:quant-ph/0503239, Mar 2005

    Article  MathSciNet  Google Scholar 

  11. Kumar, A., Maitra, S., Mukherjee, C.S.: On approximate real mutually unbiased bases in square dimension. Cryptogr. Commun. 13(2), 321–329 (2021). https://doi.org/10.1007/s12095-020-00468-6

    Article  MathSciNet  Google Scholar 

  12. Paley, R.E.A.C.: On orthogonal Matrices. J. Math. Phys. 12(1–4), 311–320 (1933). https://doi.org/10.1002/sapm1933121311

    Article  Google Scholar 

  13. Paterek, T., Dakić, B., Brukner, Č.: Mutually unbiased bases, orthogonal Latin squares, and hidden-variable models. Phys. Rev. A 79(1), 012109 (2009). https://doi.org/10.1103/PhysRevA.79.012109. arXiv:0804.2193, Jan 2009

    Article  MathSciNet  Google Scholar 

  14. Paterek, T., Pawłowski, M., Grassl, M., Brukner, Č.: On the connection between mutually unbiased bases and orthogonal Latin squares. Phys. Scr. 2010(T140), 014031 (2010). https://doi.org/10.1088/0031-8949/2010/T140/014031. arXiv:0910.1439, Oct 2009

    Article  Google Scholar 

  15. Raychaudhuri, D.K., Wilson, R.M.: The existence of resolvable block designs. In: A Survey of Combinatorial Theory. https://doi.org/10.1016/B978-0-7204-2262-7.50035-1, pp 361–375. Elsevier (1973)

  16. Saniga, M., Planat, M., Rosu, H.: Mutually unbiased bases and finite projective planes. J. Opt. B Quantum Semiclassical Opt. 6(9), L19 (2004). https://doi.org/10.1088/1464-4266/6/9/L01. arXiv:math-ph/0403057, Jul 2004

    Article  MathSciNet  Google Scholar 

  17. Shparlinski, I.E., Winterhof, A.: Constructions of approximately mutually unbiased bases. LATIN 2006: Theor. Inform. 3887, 793–799 (2006). https://doi.org/10.1007/11682462_72

    MathSciNet  MATH  Google Scholar 

  18. Shrikhande, S.S.: Affine resolvable balanced incomplete block designs: a survey. Aequationes Math. 14(3), 251–269 (1976). https://doi.org/10.1007/BF01835977

    Article  MathSciNet  Google Scholar 

  19. Stinson, D.: Combinatorial Designs: Constructions and Analysis. Springer Science & Business Media, New York (2007)

    MATH  Google Scholar 

  20. Szöllősi, F.: Construction classification and parametrization of complex Hadamard matrices. ProQuest Dissertations And Theses; Thesis (Ph.D.)–The University of Wisconsin - Madison. arXiv:1110.5590, Oct 2011 (2011)

  21. Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions. Quantum Inform. Comput. 5(2), 93–101 (2005). https://doi.org/10.5555/2011626.2011627. arXiv:quant-ph/0407081, Jul 2004

    Article  MathSciNet  Google Scholar 

  22. Wootters, W.K.: Quantum measurements and finite geometry. Found. Phys. 36(1), 112–126 (2006). https://doi.org/10.1007/s10701-005-9008-x. arXiv:quant-ph/0406032

    Article  MathSciNet  Google Scholar 

  23. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191(2), 363–381 (1989). https://doi.org/10.1016/0003-4916(89)90322-9

    Article  MathSciNet  Google Scholar 

  24. Zauner, G.: Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 9(01), 445–507 (2011). https://doi.org/10.1142/S0219749911006776

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors like to thank the anonymous reviewer for detailed comments that improved the technical writing of this paper. Moreover, the authors like to acknowledge Mr. Suman Dutta (Research Fellow) and Mr. Chandra Sekhar Mukherjee (Master’s student) of Indian Statistical Institute for detailed reviews on an initial version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhamoy Maitra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Maitra, S. Resolvable block designs in construction of approximate real MUBs that are sparse. Cryptogr. Commun. 14, 527–549 (2022). https://doi.org/10.1007/s12095-021-00537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00537-4

Keywords

Mathematics Subject Classification (2010)

Navigation