Skip to main content
Log in

Repeated root cyclic codes over \(\mathbb {Z}_{p^{2}}+u\mathbb {Z}_{p^{2}}\) and their Lee distances

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper we have studied repeated root cyclic codes of length pk over \(R=\mathbb {Z}_{p^{2}}+u\mathbb {Z}_{p^{2}}\), u2 = 0, where p is a prime and k is a positive integer. We have determined a unique set of generators for these codes and obtained some results on their Lee distances. A minimal spanning set for them has been obtained and their ranks are determined. Further, we have determined the complete algebraic structure of principally generated cyclic codes in this class. An upper bound for the Lee distance of linear codes over R is presented. We have considered two Gray maps \(\psi :R \rightarrow \mathbb {Z}_{p}^{4}\) and \(\phi _{1}:R \rightarrow \mathbb {Z}_{p^{2}}^{2}\), and using them, we have obtained some optimal binary linear codes as well as some quaternary linear codes from cyclic codes of length 4 over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\). Three of the quaternary linear codes obtained are new, and the remaining of them have the best known parameters for their lengths and types. We have also obtained some optimal ternary codes of length 12 as Gray images of repeated root cyclic codes of length 3 over \(\mathbb {Z}_{9}+u\mathbb {Z}_{9}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub, T., Oehmke, R.: On the generators of \(\mathbb {Z}_4\) cyclic codes of length 2e. IEEE Trans. Inform. Theory. 49(9), 2126–2133 (2003)

    Article  MathSciNet  Google Scholar 

  2. Aydin, N., Asamov, T.: The Z4 database (http://www.z4codes.info), (Accessed July, 2021)

  3. Bosma, W., Cannon, J. J., Fieker, C., Steel, A. (Eds): Handbook of Magma functions, 2.16 edn., p. 5017 (2010)

  4. Castagnoli, G., Massey, J. L., Schoeller, P. A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 337–342 (1991)

    Article  MathSciNet  Google Scholar 

  5. Gao, J., Fu, F. W., Xiao, L., Bandi, R. K.: Some results on cyclic codes over \(\mathbb {Z}_q+u\mathbb {Z}_q\). Discret. Math. Algorithm. Appl. 7(4), 1550058 (2015)

  6. Hammons, Jr.A. R., Kumar, P. V., Calderbank, A. R., Sloane, N. J. A., Solé, P.: The Z4 linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)

    Article  MathSciNet  Google Scholar 

  7. Dinh, H., Lopez-Permouth, S. R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory. 50(8), 1728–1744 (2004)

    Article  MathSciNet  Google Scholar 

  8. Dinh, H.: Constacyclic codes of length ps over \(\mathbb {F}_{p^m}+u\mathbb {F}_{p^m}\). J. Algebra 324, 940–950 (2010)

    Article  MathSciNet  Google Scholar 

  9. Kiah, H. M., Leung, K. H., Ling, S.: Cyclic codes over GR(p2,m) of length pk. Finite Fields Appl. 14, 834–846 (2008)

    Article  MathSciNet  Google Scholar 

  10. Kewat, P. K., Ghosh, B., Pattanayak, S.: Cyclic codes over \(\frac {\mathbb {Z}_p[u, v]}{\langle u^2,v^2,uv-vu \rangle }\). Finite Fields Appl. 34, 161–175 (2015)

    Article  MathSciNet  Google Scholar 

  11. van Lint, J. H.: Repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 343–345 (1991)

    Article  MathSciNet  Google Scholar 

  12. Massey, J. L., Costello, D. J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inform. Theory 19, 101–110 (1973)

    Article  MathSciNet  Google Scholar 

  13. Norton, G. H., Sălăgean, A.: Cyclic codes and minimal strong Grobner bases over a principal ideal ring. Finite Fields Appl. 9, 237–249 (2003)

    Article  MathSciNet  Google Scholar 

  14. Sobhani, R., Esmaeili, M.: Cyclic and negacyclic codes over the Galois ring GR(p2,m). Discret. Math. Appl. 157, 2892–2903 (2009)

    Article  Google Scholar 

  15. Sobhani, R., Molakarimi, M.: Some results on cyclic codes over the ring R2,m,. Turkish J. Math. 37, 1061–1074 (2013)

    Article  MathSciNet  Google Scholar 

  16. Yildiz, B., Karadeniz, S.: Cyclic codes over F2 + uF2 + vF2 + uvF2. Des. Codes Cryptogr. 58(3), 221–234 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions that greatly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maheshanand Bhaintwal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Bhaintwal, M. Repeated root cyclic codes over \(\mathbb {Z}_{p^{2}}+u\mathbb {Z}_{p^{2}}\) and their Lee distances. Cryptogr. Commun. 14, 551–577 (2022). https://doi.org/10.1007/s12095-021-00540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00540-9

Keywords

Mathematics Subject Classification (2010)