Skip to main content
Log in

Survey on recent trends towards generalized differential and boomerang uniformities

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block and stream ciphers and cryptographic hash functions. The discovery of differential cryptanalysis is generally attributed to Biham and Shamir in the late 1980s, who published several attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). Boomerang cryptanalysis is a method for the cryptanalysis of block ciphers based on differential cryptanalysis. It was invented by Wagner in (FSE, LNCS 1636, 156–170, 1999) and has allowed new avenues of attack for many ciphers previously deemed safe from differential cryptanalysis. Differential and boomerang uniformities are crucial tools to handle and analyze vectorial functions (designated by substitution boxes, or briefly S-boxes in the context of symmetric cryptography) to resist differential and boomerang attacks, respectively. Ellingsen et al. (IEEE Transactions on Information Theory 66(9), 2020) introduced a new variant of differential uniformity, called c-differential uniformity (where c is a non-zero element of a finite field of characteristic p), of p-ary (nm)-function for any prime p obtained by extending the well-known derivative of vectorial functions into the (multiplicative) c-derivative. Later, Stănică [Discrete Applied Mathematics, 2021] introduced the notion of c-boomerang uniformity. Both c-differential and c-boomerang uniformities have been extended to the idea of simple differential and boomerang uniformities, respectively, which are recovered when c equals 1.This survey paper combines the known results on this new concept of differential and boomerang uniformities and analyzes their possible cryptographic applications. This survey presents an overview of these significant concepts that might have greater implications for future theoretical research on this subject and applied perspectives in symmetric cryptography and related topics. Along with the paper, we analyze these discoveries and the results provided synthetically. The article intends to help readers explore further avenues in this promising and emerging direction of research. At the end of the article, we present more than nine lines of perspectives and research directions to benefit symmetric cryptography and other related domains such as combinatorial theory (namely, graph theory).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Applic. 17(1), 51–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartoli, D., Timpanella, M.: On a generalization of planar functions. Journal of Algebraic Combinatorics 52, 187–213 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartoli, D., Calderini, M.: On construction and (non)existence of \(c\)-(almost) perfect nonlinear functions. arXiv:2008.039536v1 (2020)

  4. Bartoli, D., Calderini, M., Riera, C., Stănică, P.: Low c-differential uniformity for functions modified on subfields. In The 6th International Workshop on Boolean Functions and their Applications BFA (2021)

  5. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. Eurocrypt 2019, LNCS 11476, 313–342 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beierle, C., Leander, G.: \(4\)-uniform permutations with null nonlinearity. Cryptogr. Commun. 12, 1133–1141 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berlekamp, E.R., Rumsey, H., Solomon, G.: On the solutions of algebraic equations over finite fields. Information and Control 10, 553–564 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berger, T., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear functions over \(\mathbb{F}_{2^m}\). IEEE Transactions on Information Theory 52(9), 4160–4170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biryukov, A.: The boomerang attack on 5 and 6-round reduced AES. AES4, LNCS 3373, 11–15 (2004)

  10. Biryukov, A., Nikolić, I., Roy, A.: Boomerang attacks on BLAKE-32. FSE 2011, LNCS 6733, 218–237 (2011)

  11. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4, 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. Crypto 1992, LNCS 740, 487–496 (1992)

  13. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis. Asiacrypt 2002, LNCS 2501, 254–266 (2002)

  14. Bracken, C., Leander, G.: A highly nonlinear differentially \(4\) uniform power mapping that permutes fields of even degree Finite Fields Appl. 16, 231–242 (2010)

  15. Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation in dimension six. Finite Fields Appl. Contemp. Math. Amer. Math. Soc. 518, 3–42 (2010)

  16. Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative differentials. FSE, LNCS 2365, 17–33 (2002)

    MATH  Google Scholar 

  17. Boukerrou, H., Huynh, P., Lallemand, V., Mandal, B., Minier, M.: On the feistel counterpart of the boomerang connectivity table introduction and analysis of the FBCT. IACR Transactions on Symmetric Cryptology 2020(1), 331–362 (2020)

    Article  Google Scholar 

  18. Boura, C., Canteaut, A.: On the boomerang uniformity of cryptographic S-boxes. IACR Transactions on Symmetric Cryptology 2018(3), 290–310 (2018)

    Article  Google Scholar 

  19. Budaghyan, L.: Construction and Analysis of Cryptographic Functions. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  20. Budaghyan, L., Calderini, M., Carlet, C., Coulter, R.S., Villa, I.: Generalized isotopic shift construction for APN functions. Des. Codes Cryptogr. 89(1), 19–32 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Calderini, M., Villa, I.: On the boomerang uniformity of some permutation polynomials. Cryptography and Communications 12, 1161–1178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Calderini, M.: Differentially low uniform permutations from known \(4\)-uniform functions. Des. Codes Cryptogr. 89, 33–52 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Canteaut, A., Naya-Plasencia, M.: Structural weaknesses of permutations with a low differential uniformity and generalized crooked functions. In Finite Fields: Theory and Applications- FQ9 - Contemporary Mathematics, AMS, number 518, pp. 55–71 (2010)

  24. Canteaut, A., Duval, S., Perrin, L.: A generalisation of Dillon’s APN permutation with the best known differential and nonlinear properties for all fields of size \(2^{4k+2}\). IEEE Transactions on Information Theory 63(11), 7575–7591 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Carlet, C.: Boolean functions for cryptography and error correcting codes. Chapter of the monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Y. Crama and P. Hammer (eds), Cambridge University Press, pp. 257–397 (2010)

  26. Carlet, C.: Vectorial Boolean Functions for Cryptography . Chapter of the monography “Boolean Models and Methods in Mathematics”. Computer Science, and Engineering, Y. Crama and P. Hammer (eds), Cambridge University Press, pp. 398–469 (2010)

  27. Carlet, C.: Characterizations of the differential uniformity of vectorial functions by the walsh transform. IEEE Trans. Inf. Theory 64(9), 6443–6453 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Carlet, C.: On APN exponents, characterizations of differentially uniform functions by the Walsh transform and related cyclic-difference-set-like structures. Designs, Codes and Cryptography (87), 203–224 (2019)

  29. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021)

    MATH  Google Scholar 

  30. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosysytem. Designs, Codes and Cryptography 15, 125–156 (1998)

    Article  MATH  Google Scholar 

  31. Carlet, C., de Chérisey, E., Guilley, S., Kavut, S., Tang, D.: Intrinsic resiliency of s-boxes against side-channel attacks best and worst scenarios. IEEE Transactions on Information Forensics and Security 16, 203–218 (2021)

    Article  Google Scholar 

  32. Carlet, C., Mesnager, S.: Four decades of research on bent functions. Journal Designs, Codes and Cryptography 78(1), 5–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In Adv. in Crypt – EUROCRYPT’ 94, LNCS 950, pp. 356–365 (1995)

  34. Charpin, P.: Crooked functions. In: James, A. (ed.) Finite Fields and their Applications, pp. 87–102. De Gruyter, Davis, Berlin, Boston (2020)

    Chapter  Google Scholar 

  35. Charpin, P.: The Crooked property. 2020. hal-03091422 (2020)

  36. Charpin, P., Kyureghyan, G.: When does \(G(x)+\gamma \rm Tr(H(x))\) permute \(\mathbb{F}_{p^n}\). Finite Fields and its Applications 15(5), 615–632 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Cusick, T.W., Stănică, P.: Cryptographic Boolean functions and applications. Elsevier, Academic Press (2009)

  38. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. Eurocrypt 2018, LNCS 10821, 683–714 (2018)

  39. Coulter, R.S., Matthews, R.W.: On the number of distinct values of a class of functions over a finite field. Finite Fields Applic. 17, 220–224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class II. Designs, Codes and Cryptography 10, 167–184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  42. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. FSE 1997, LNCS 1267, 149–165 (1997)

  43. Dembowski, P., Ostrom, T.G.: Planes of order n with collineation groups of order \(n^2\). Mathematische Zeitschrift 103, 239–258 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dillon, J.: Elementary Hadamard difference sets. Ph.D. dissertation, Net. Commun. Lab., Univ. Maryland, College Park, MD, USA (1974)

  45. Dobbertin, H., Mills, D., Mller, E.N., Pott, A., Willems, W.: APN functions in odd characteristic. Discrete Mathematics 267(1–3), 95–112 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on \(12\)-Round Serpent. Indocrypt 2008, LNCS 5365, 308–321 (2008)

  47. Ding, C., Yuan, J.: A new family of skew Paley-Hadamard difference sets. Journal of Combinatorial Theory, Series A 113, 1526–1535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Eddahmani, S., Mesnager, S.: Explicit values of the DDT, the BCT, the FBCT, and the FBDT of the inverse, the Gold, and the Bracken-Leander functions. In The 6th International Workshop on Boolean Functions and their Applications BFA (2021)

  49. Ellingsen, P., Felke, P., Riera, C., Stănică, P., Tkachenko, A.: \(c\)-differentials, multiplicative uniformity, and (almost) perfect \(c\)-nonlinearity. IEEE Transactions on Information Theory 66(9), 5781–5789 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Godsil, C., Roy, A.: Two characterizations of crooked functions. IEEE Transactions on Information Theory 54(2), 864–866 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inform. Theory 14(1), 154–156 (1968)

    Article  MATH  Google Scholar 

  52. Helleseth, T., Sandberg, D.: Some power mappings with low differential uniformity. Applicable, Algebra in Engineering, Communications and computing 8, 363–370 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Helleseth, T., Rong, C., Sandberg, D.: New families of almost perfect nonlinear power mappings. IEEE Transactions on Information Theory 45, 475–485 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. Huang, T., Tjuawinata, I., Wu, H.: Differential-linear cryptanalysis of ICEPOLE. FSE 2015, LNCS 9054, 243–263 (2015)

  55. Hasan, S.U., Pal, M., Riera, C., Stănică, P.: On the \(c\)-differential uniformity of certain maps over finite fields. Designs, Codes and Cryptography 89, 221–239 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hasan, S.U., Pal, M., Stănică, P.: The (generalized) boomerang uniformity of some classes of functions over finite fields. In The 6th International Workshop on Boolean Functions and their Applications BFA (2021)

  57. Hasan, S.U., Pal, M., Stănică, P.: The \(c\)-differential uniformity and boomerang uniformity of two classes of permutation polynomials. IEEE Transactions on Information Theory (to appear)

  58. Kim, K.H., Choe, J., Mesnager, S.: Solving \(X^{q+1}+X+a=0\) over finite fields. Finite Fields and Their Applications 70, 101797 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  59. Kim, K.H., Choe, J.H., Mesnager, S.: Complete solution over \(\rm GF({p^n})\) of the equation \(X^{p^k+1}+X+a=0\). Finite Fields and Their Applications 76, 101902 (2021)

    Article  MATH  Google Scholar 

  60. Kim, K.H., Mesnager, S.: Solving \(x^{2^k+1}+x+a=0\) in \(\rm GF({p^n})\) with \(\text{ gcd }(n, k)=1\). Finite Fields and Their Applications 63, 101630 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kim, K.H., Mesnager, S., Choe, J.H., Lee, D.N., Lee, S., Jo, M.C.: On permutation quadrinomials with boomerang uniformity 4 and the best-known nonlinearity (2021) Submitted

  62. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In Advances in Cryptology CRYPTO 96, N. Koblitz (ed.), pp. 104–113 (1996)

  63. Kocher, P., Jae, J., Jun, B.: Dierential power analysis. Annual International Cryptology Conference CRYPTO 1999: Advances in Cryptology, CRYPTO’ 99, 388–397 (1999)

  64. Knudsen, L., Wagner, D.: Integral cryptanalysis (extended abstract) FSE 2002. LNCS 2365, 112–127 (2002)

    MATH  Google Scholar 

  65. Knudsen, L.: Truncated and higher order differentials. FSE 1994, LNCS 1008, 196–211 (1995)

  66. Knudsen, L.: DEAL–a 128-bit block cipher. Technical report no. 151. Department of Informatics, University of Bergen, Norway

  67. Knudsen, L.R.: Partial and higher order differentials and applications to the DES. BRICS Report Series, RS–95–9 (1995)

  68. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. Crypto 1994, LNCS 839, 17–25 (1994)

  69. Lai, X.: Higher order derivatives and differential cryptanalysis. Communications and Cryptography 276, 227–233 (1994)

    Article  MATH  Google Scholar 

  70. Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning. Eurocrypt 2016, LNCS 9665, 344–371 (2016)

  71. Leducq, E.: New families of APN functions in characteristic 3 or 5. Contemporary Mathematics 574, 115–123 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. Li, K., Li, C., Helleseth, T., Qu, L.: Cryptographically strong permutations from the butterfly structure. Designs, Codes and Cryptography 89, 737–761 (2021). https://doi.org/10.1007/s10623-020-00837-5, Version posted in Archive in December 2019: arXiv:1912.02640

  73. Li, K., Qu, L., Li, C., Chen, H.: On a conjecture about a class of permutation quadrinomials. Finite Fields and Their Applications 66, 101690 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  74. Li, H., Zhou, Y., Ming, J., Yang, G., Jin, C.: The notion of transparency order revisited. The Computer Journal 63(12), 1915–1938 (2020)

    Article  MathSciNet  Google Scholar 

  75. Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials (Pitman Monographs and Surveys in Pure and Applied Mathematics). Longman Scientific and Technical, Essex, England, 65 (1993)

  76. NIST Lightweight Cryptography https://csrc.nist.gov/projects/lightweight-cryptography

  77. Li, N., Helleseth, T., Tang, X.: Further results on a class of permutation polynomials over finite fields. Finite Fields Applic. 22, 16–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  78. Li, K., Qu, L., Sun, B., Li, C.: New results about the boomerang uniformity of permutation polynomials. IEEE Transactions on Information Theory 65(11), 7542–7553 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  79. Li, N., Hu, Z., Xiong, M., Zeng, X.: \(4\)-uniform BCT permutations from generalized buttefly structure. ArXiv:2001.006v1,02/01/2020

  80. Li, N., Xiong, M., Zeng, X.: On permutation quadrinomials and \(4\)-uniform BCT. IEEE Transactions on Information Theory 67(7), 4845–4855 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  81. Mesnager, S.: Bent Functions–Fundamentals and Results. Springer, Switzerland, pp. 1–544 (2016)

  82. Mesnager, S.: Linear codes from functions. In A Concise Encyclopedia of Coding Theory Press/Taylor and Francis Group (Publisher) London, New York (94 pages in Chapter 20), W. C. Huffman, J-L Kim and P. Solé (eds) (2021)

  83. Mesnager, S.: Private communication related to French ANR BARRACUDA (2021)

  84. Mesnager, S., Tang, C., Xiong, M.: On the boomerang uniformity of quadratic permutations. Designs, Codes and Cryptography 88(10), 2233–2246 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  85. Mesnager, S., Riera, C., Stanica, P., Yan, H., Zhou, Z.: Investigations on \(c\)-(almost) perfect nonlinear functions. IEEE Transactions on Information Theory 67(10), 6916–6925 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  86. Mesnager, S., Qu, L.: On two-to-one mappings over finite fields. IEEE Transaction on Information Theory 65(12), 7884–7895 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  87. Matsui, M.: Linear cryptanalysis method for DES cipher. Eurocrypt 1993, LNCS, 765, 386–397 (1993)

  88. Nyberg, K.: Differentially uniform mappings for cryptography. Eurocrypt 1993, Workshop on the Theory and Application of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1993, LNCS, vol. 765, pp. 55–64 (1994)

  89. Nyberg, K.: The extended autocorrelation and Boomerang tables and Links between nonlinearity properties of vectorial Boolean functions. Cryptology ePrint Archive 1381 (2019)

  90. Nobauer, W.: Uber eine Klasse von Permutations polynomen und die dadurch dargestellten Gruppen. J. Reine Angew. Math. 231, 215–219 (1968)

    MATH  Google Scholar 

  91. Perrin, L., Udovenko, A., Biryukov, A.: Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem. CRYPTO’16 (2), pp. 93–122 (2016)

  92. Rónyai, L., Szonyi, T.: Planar functions over finite fields. Combinatorica 9(3), 315–320 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  93. Rothaus, O.: On ‘bent’ functions,. J. Combin. Theory Ser. A 20, 300–305 (1976)

    Article  MATH  Google Scholar 

  94. Shannon, C.E.: A mathematical theory of cryptography. Bell System Technical Memo MM 45-110-02, (1945)

  95. Shamir, A.: Impossible differential attacks. Crypto 1998 rump session

  96. Stănică, P.: Investigations on \(c\)-boomerang uniformity and perfect non-linearity. Discrete Applied Mathematics, 2021. To appear. arxiv.org/abs/2004.11859 (2020)

  97. Stănică, P.: Low \(c\)-differential and \(c\)-boomerang uniformity of the swapped inverse function. Discrete Mathematics, 2021.To appear. arXiv:2009.09268 (2020)

  98. Stănică, P.: Low \(c\)-differential uniformity of the Gold function modified on a subfield. Proc. International Conf. on Security and Privacy, Springer (ICSP 2020), LNEE 744, Springer, pp. 131–137 (2021)

  99. Stănică, P.: Using double Weil sums in finding the \(c\)-Boomerang Connectivity Table for monomial functions on finite fields. Applicable Algebra in Engineering, Communication and Computing (2021)

    Book  Google Scholar 

  100. Stăniă, P., Riera, C., Tkachenko, A.: Characters, Weil sums and \(c\)-differential uniformity with an application to the perturbed Gold functions. Cryptography and Communications. To appear. arXiv:2009.07779v1 (2020)

  101. Stănică, P., Geary, A.: The \(c\)-differential behavior of the inverse function under the EA-equivalence. Cryptography and Communications 13, 295–306 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  102. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited application to SKINNY and AES. IACR Transactions on Symmetric Cryptology 1, 118–141 (2019)

    Article  Google Scholar 

  103. Todo, Y.: Structural evaluation by generalized integral property. Eurocrypt 2015, LNCS 9056, 287–314 (2015)

  104. Tang, D., Mandal, B., Maitra, S.: Vectorial Boolean functions with very low differential-linear uniformity using Maiorana–McFarland type construction. Indocrypt 2019, LNCS 11898, 341–360 (2019)

  105. Tian, S., Boura, C., Perrin, L.: Boomerang uniformity of popular S-box constructions. Designs, Codes and Cryptography 88, 1959–1989 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  106. Wagner, D.: The boomerang attack. FSE, LNCS 1636, 156–170 (1999)

    MATH  Google Scholar 

  107. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. IACR Transactions on Symmetric Cryptology 2019(1), 142–169 (2019)

    Article  Google Scholar 

  108. Wu, Y., Li, N., Zeng, X.: New P\(c\)N and AP\(c\)N functions over finite fields. arXiv:2010.05396v1 (2020)

  109. Xu, X., Li, C., Zeng, X., Helleseth, T.: Constructions of complete permutation polynomial. Designs, Codes and Cryptography 86, 2869–2892 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  110. Zha, Z., Wang, X.: Power functions with low uniformity on odd characteristic finite fields. Science China Mathematics 53(8), 1931–1940 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  111. Zha, Z., Wang, X.: Almost perfect nonlinear power functions in odd characteristic. IEEE Transactions on Information Theory 57(7), 4826–4832 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  112. Zha, Z., Hu, L.: Some classes of power functions with low \(c\)-differential uniformity over finite fields. arXiv:2008.12183v1 (2020)

  113. Zieve, M.: Planar functions and perfect nonlinear monomials over finite fields. Designs, Codes and Cryptography 75, 71–80 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author, S. Mesnager, expresses her profound gratitude and sincere thanks to the Editor-in-Chief of the CCDS journal, Claude Carlet, for his nice invitation to contribute to this topical collection-Special Issue “ Surveys”. She was highly honored and glad to push her analysis, thoughts, and developments along with this survey article in this attractive novel direction of research, including many very recent (2021) results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Mesnager.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesnager, S., Mandal, B. & Msahli, M. Survey on recent trends towards generalized differential and boomerang uniformities. Cryptogr. Commun. 14, 691–735 (2022). https://doi.org/10.1007/s12095-021-00551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00551-6

Keywords

Mathematics Subject Classication (2010)

Navigation