Skip to main content

Advertisement

Log in

MDS or NMDS LCD codes from twisted Reed-Solomon codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Maximum distance separable (MDS) codes are optimal with parameters [n,k,nk + 1]. Near MDS (NMDS) codes were introduced in 1995 by weakening the definition of MDS codes. NMDS codes also have applications in secret sharing scheme. Linear complementary dual (LCD) codes have been widely used in communications systems, consumer electronics, cryptography and so on. The construction of LCD MDS codes is thus interesting in coding theory. Twisted Reed Solomon (TRS) codes are generalized by Reed Solomon (RS) codes and are not equivalent to RS codes in general case. In this paper, we give parity check matrices of twisted generalized Reed-Solomon (TGRS) codes, show the sufficient and necessary condition that TGRS codes are MDS or NMDS codes, and construct several classes of LCD MDS or NMDS codes from two classes of TGRS codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beelen, P., Puchinger, S., Ronsenkilde ne Nielsen, J.: Twisted Reed-Solomon codes. In: IEEE ISIT, pp 336–340 (2017)

  2. Beelen, P., Bossert, M., Puchinger, S., Rosenkilde, J.: Structural properties of twisted Reed-Solomon codes with applications to code-based cryptography. In: IEEE ISIT, pp 946–950 (2018)

  3. Beelen, P., Jin, L.: Explicit MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(11), 7188–7193 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct sum masking: A smartcard friendly computation paradigm in a code, with Builtin protection against side-channel and fault attacks. In: Information Security Theory and Practice. Securing the Internet of Things (Lecture Notes in Computer Science), vol. 8501, pp 40–56. Springer, New York, NY, USA (2014)

  5. Carlet, C., Guilley, S.: Complementary dual codes for countermeasures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS Codes. Des. Codes Cryptogr. 86(11), 2605–1618 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, B., Liu, H.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dinh, H.: Structure of repeated-root constacyclic codes of length 6ps and their duals. Contemp. Math. 609, 69–87 (2014)

    Article  Google Scholar 

  9. Dodunekov, S., Landjev, I.: On near-MDS codes. J. Geometry 54(1-2), 30–43 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doudunekov, S., Landjev, I.: Near-MDS codes over some small fields. Discret. Math. 213, 55–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dougherty, S., Kim, J., Ozkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: Linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2-3), 116–128 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Esmaeili, M., Yari, S.: On complementary-dual quasi-cyclic codes. Finite Fields Appl. 15(3), 375–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang, X., Liu, M., Luo, J.: On Euclidean hulls odf MDS codes. Cryptogr. Commun. 13(1), 1–14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang, W., Fu, F., Li, L., Zhu, S.: Euclidean and hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 66 (6), 3527–3537 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Güneri, C., Özkaya, B., Solè, P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huffman, W., Pless, V.: Fundamentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  17. Huang, D., Yue, Q., Niu, Y., Li, X.: MDS or NMDS self-dual codes from twisted generalized Reed-Solomon codes. Des. Codes Cryptogr. 89 (9), 2195–2209 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou, X., Oggier, F.: On LCD codes and lattices. In: Proc. IEEE Int. Symp. Inf. Theory, pp 1501–1505 (2016)

  19. Jin, L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Jin, L., Kan, H.: Self-dual near MDS codes from elliptic curves. IEEE Trans. Inf. Theory 65(4), 2166–2170 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lavauzelle, J., Renner, J.: Cryptanalysis of a system based on twisted Reed-Solomon codes. Des. Codes Cryptogr. 88(7), 1285–1300 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., Ding, C., Li, S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H., Liu, S.: New constructions of MDS twisted Reed-Solomon codes and LCD MDS codes. Des. Codes Cryptogr. 89(9), 2051–2065 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, X., Fan, Y., Liu, H.: Galois LCD codes over finite fields. Finite Fields Appl. 49, 227–242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Massey, J.: Linear codes with complementary duals. Discret. Math. 106-107, 337–342 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Randriambololona, H.: On products and powers of linear codes under componentwise multiplication. Algorithm. Arith. Geom. Cod. Theory 637, 3–78 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Shi, M., Özbudak, F., Xu, L., Solé, P.: LCD codes from tridiagonal Toeplitz matrices. Finite Fields Appl. 75, 101892 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, X., Yue, Q.: New LCD MDS codes constructed from generalized Reed-Solomon codes. J. Algebra Appl., https://doi.org/10.1142/S0219498819501500 (2018)

  29. Simos, D.E., Varbanov, Z.: MDS codes, NMDS codes and their secret-sharing schems. Accessed: Apr. 2018. [Online]

  30. Sok, L., Shi, M., Solé, P.: Construction of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, Y., Hyun, J., Lee, Y.: New LCD MDS codes of non-Reed-Solomon type. IEEE Trans. Inf. Theory 67(8), 5069–5078 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, X., Massey, J.: The necessary and sufficient condition for a cyclic code to have a complementary dual. Discret. Math. 126, 391–393 (1994)

    Article  MATH  Google Scholar 

  33. Zhou, Y., Wang, F., Xin, Y., Luo, S., Qing, S., Yang, Y.: A Secret sharing scheme based on near-MDS codes. In: Proc. IC-NIDC, pp 833–836 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Yue.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by National Natural Science Foundation of China (No. 62172219, No. 12171420) and National Science Foundation of Shandong Province under Grant ZR2021MA046, and National Science Foundation of Jiangsu Province of China (No. BK20200268).

This article belongs to the Topical Collection: Sequences and Their Applications III

Guest Editors: Chunlei Li, Tor Helleseth and Zhengchun Zhou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Yue, Q. & Niu, Y. MDS or NMDS LCD codes from twisted Reed-Solomon codes. Cryptogr. Commun. 15, 221–237 (2023). https://doi.org/10.1007/s12095-022-00564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00564-9

Keywords

Mathematics Subject Classification (2010)