Skip to main content
Log in

Status of three classes of sequences

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Pseudorandom sequences, sometimes shortened as sequences, have played a key role in the applications of digital communications, cryptography and computer science. This research field is an example of scientific research directly born from the real world applications. Specifically, the research on sequences stems from the application of the sequences generated by maximal length linear feedback shift registers to detect returning signals from Explorer 1, the satellite launched on January 31, 1958 by US, shortly after Sputnik, launched by Soviet Union on October 4, 1957 which is the first satellite in the human being civilization. With more than seven decades of the developments of theory and practice of sequences, this field has evolved to acquire a wide range of the tools and methodologies from extremely deep mathematic fields (comparing with other engineering subjects), such as algebraic geometry, number theory, combinatorics, representation theory, harmonic analysis, to just mention a few. In this survey, we present the current status of the research in sequence design along three different directions, i.e., the sequences with 2-level autocorrelation, the sequence sets with low ambiguity, and Golay complementary sequence sets and complete complementary codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R., Zidaric, N.: WAGE: An authenticated cipher NIST lightweight cryptography standardization project Round 2 Candidate (2019)

  2. Altawy, R., Gong, G., Mandal, K., Rohit, R.: Wage: An authenticated encryption with a twist. IACR Trans. Symmetric-key Crypt. Spec. Issue 1 2020, 132–159 (2020)

    Article  Google Scholar 

  3. Arasu, K.T., Dillon, J.F., Player, K.J.: Character sum factorizations yield sequences with ideal two-level autocorrelation. IEEE Trans. Inf. Theory 61(6), 3276–3304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumert, L.: Cyclic Difference Sets, vol. 182. Springer-Verlag, New York (1971)

    Book  MATH  Google Scholar 

  5. Boehmer, A.M.: Binary pulse compression codes. IEEE Trans. Inf. Theory 13(2), 156–167 (1967)

    Article  MATH  Google Scholar 

  6. Budišin, S.Z., Spasojević, P.: Filter bank representation of complementary sequence pairs. In: Fiftieth Annual Allerton Conference on Communication, Control, and Computing, pp 716–723, Monticello, IL, USA (2012)

  7. Budišin, S.Z., Spasojević, P.: Paraunitary-based Boolean generator for QAM sequences of length 2K. IEEE Trans. Inf. Theory 64(8), 5938–5956 (2018)

    Article  MATH  Google Scholar 

  8. Butson, A.T.: Generalized Hadamard matrices. Proc. Amer. Math. Soc. 13(6), 894–898 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlet, C.: Componentwise APNness, Walsh uniformity of APN functions, and cyclic-additive difference sets. Finite Fields Appl. 53, 226–253 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, C., Wang, C., Chao, C.: Complementary sets and Reed-Muller codes for peak-to-average power ratio reduction in OFDM. In: Fossorier, M., et al. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp 317–327. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

  11. Chen, C., Wang, C., Chao, C.: Complete complementary codes and generalized reed-muller codes. IEEE Commun. Lett. 12(11), 849–851 (2008)

    Article  Google Scholar 

  12. Davis, J., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45(7), 2397–2417 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dillon, J.F., Dobbertin, H.: New cyclic difference sets with singer parameters. Finite Fields Appl. 10(3), 342–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, C., Feng, K., Feng, R., Xiong, M., Zhang, A.: Unit time-phase signal sets: bounds and constructions. Cryptogr. Commun. 5(3), 209–227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, C., Helleseth, T., Lam, K.Y.: Several classes of binary sequences with three-level autocorrelation. IEEE Trans. Inf. Theory 45, 2606–2612 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fiedler, F., Jedwab, J., Wiebe, A.: A new source of seed pairs for Golay sequences of length 2m. J. Combin. Theory (Series A) 117, 589–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Golay, M.: Static multisplit spectrometry its application to the panoramic display of infrared spectra. J. Opt. Soc. Am. 117, 468–472 (1951)

    Article  Google Scholar 

  18. Golay, M.: Complementary series. IRE Trans. Inf. Theory 7(2), 82–87 (1961)

    Article  MathSciNet  Google Scholar 

  19. Golomb, S., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar Applications. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  20. Golomb, S.W.: On the classification of Boolean functions. IEEE Trans. Inf. Theory 5(4), 176–186 (1959)

    Article  MathSciNet  Google Scholar 

  21. Golomb, S.W.: Shift Register Sequences. Holden-Day, Inc., San Francisco, 1967, 2nd revised edition, Aegean Park Press, Laguna Hills, CA (1981), 3rd revised edition World Scientific (2017)

  22. Golomb, S.W.: Mathematics forty years after Sputnik. Am. Sch. 67(2), 89–100 (1998)

    Google Scholar 

  23. Gong, G.: Character sums and polyphase sequence families with low correlation, discrete fourier transform (DFT), and ambiguity. In: A. W., et al. (eds.) Finite Fields, and Their Applications, pp 1–42. De Gruyter, Germany (2013)

  24. Gong, G., Golomb, S.: The decimation-hadamard transform of two-level autocorrelation sequences. IEEE Trans. Inf. Theory 48(4), 853–865 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gong, G., Golomb, S., Song, H.: A note on low-correlation zone signal sets. IEEE Trans. Inf. Theory 53(7), 2575–2581 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gong, G., Helleseth, T.: Linear span of ternary 2-level autocorrelation sequences from the second-order DHT. Unpublished manuscript (2004)

  27. Gong, G., Helleseth, T., Kumar, V., Solomon, W.: Golomb – mathematician, engineer, and pioneer. IEEE Trans. Inf. Theory - Spec. Issue Shift-Register Sequences, Codes Cryptogr. Mem. Solomon W. Golomb 64(4), 2844–2857 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Gurevich, S., Hadani, R., Sochen, N.: The finite harmonic oscillator and its applications to sequences, communication and radar. IEEE Trans. Inf. Theory 54(9), 4239–4253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hadani, R., Rakib, S., Tsatsanis, M., Monk, A., Goldsmith, A.J., Molisch, A.F., Calderbank, R.: Orthogonal time frequency space modulation. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6 (2017)

  30. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal arrays: theory and applications. Springer Science & Business Media, New York (1999)

    Book  MATH  Google Scholar 

  31. Helleseth, T., Gong, G.: New nonbinary sequences with ideal two-level autocorrelation. IEEE Trans. Inf. Theory 48(11), 2868–2872 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Handbook of Coding Theory, vol. 2, pp 1765–1853. Elsevier, Amsterdam, The Netherlands (1998)

  33. Helleseth, T., Li, C.: Pseudo-noise sequences. In: Cary Huffman, P.S.W., Kim, J.-L. (eds.) Concise Encyclopedia of Coding Theory, chapter 25, pp 613–644. Chapman and Hall/CRC Press, North-Holland, Amsterdam (2021)

  34. Howard, S., Calderbank, A., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Sig. Process., 1–12 (2006)

  35. Hu, H., Shao, S., Gong, G., Helleseth, T.: The proof of lin’s conjecture via the decimation-hadamard transform. IEEE Trans. Inf. Theory 60(8), 5054–5064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Katz, D.J.: Sequences with low correlation. In: Budaghyan, L., Rodríguez-Henríquez, F. (eds.) Arithmetic of Finite Fields, pp 149–172. Springer International Publishing, Cham (2018)

  37. Kim, Y., Song, H.: Cross correlation of Sidelnikov sequences and their constant multiples. IEEE Trans. Inf. Theory 53(3), 1220–1224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kim, Y., Song, H., Gong, G., Chung, H.: Crosscorrelation of q-ary power residue sequences of period p. In: IEEE International Symposium on Information Theory 2006, pp 311–315. IEEE (2006)

  39. Lempel, A., Cohn, M., Eastman, W.: A class of balanced binary sequences with optimal autocorrelation properties. IEEE Trans. Inf. Theory 23(1), 38–42 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, W.: Number Theory with Applications - Series on University Mathematics, vol. 7. Springer-Verlag, New York (1995)

    Google Scholar 

  41. Li, Y., Chu, W.B.: More Golay sequences. IEEE Trans. Inf. Theory 51(3), 1141–1145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ludkovski, M., Gong, G.: New families of ideal 2-level autocorrelation ternary sequences from second order DHT. In: The proceedings of the Second International Workshop in Coding and Cryptography, pp 345–354 (2001)

  43. Lüke, H.: Sets of one and higher dimensional codes and complementary codes. IEEE Trans. Aerosp. Electron. Syst. 21(2), 170–179 (1985)

    Article  MathSciNet  Google Scholar 

  44. Lüke, H., Schotten, H., Hadinejad-Mahram, H.: Binary and quadriphase sequences with optimal autocorrelation properties: a survey. IEEE Trans. Inf. Theory 49(12), 3271–3282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Malling, L., Golomb, S.W.: Radar measurements of the planet venus. Journal Brit.I.R.E., pp. 297–300 (1961)

  46. Nawaz, Y., Gong, G.: The WG Stream Cipher. Technical report, eSTREAM, ECRYPT Stream Cipher Project (2005)

  47. No, J.: p-ary unified sequences: p-ary extended d-form sequences with ideal autocorrelation property. IEEE Trans. Inf. Theory 48(9), 2540–2546 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Park, K., Song, H., Kim, D.S., Golomb, S.W.: Optimal families of perfect polyphase sequences from the array structure of fermat-quotient sequences. IEEE Trans. Inf. Theory 62(2), 1076–1086 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Parker, M.G., Riera, C.: Generalised complementary arrays. In: Lecture Notes in Computer Science, vol. 7089, pp 41–60 (2011)

  50. Paterson, K.: Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory 46(1), 104–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Paterson, K.: Sequences for OFDM and multi-code CDMA: Two problems in algebraic coding theory. In: Helleseth, T., Kumar, P., Yang, K. (eds.) Sequences and their Applications, pp 46–71. Springer London, London (2002)

  52. Rathinakumar, A., Chaturvedi, A.K.: A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences. IEEE Trans. Inf. Theory 52(8), 3817–3826 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rößing, C., Tarokh, V.: A construction of OFDM 16-QAM sequences having low peak powers. IEEE Trans. Inf. Theory 47(7), 2091–2094 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Sarwate, D.: Comments on A class of balanced binary sequences with optimal autocorrelation properties by Lempel et al. IEEE Trans. Inf. Theory 24 (1), 128–129 (1978)

    Article  Google Scholar 

  55. Schmidt, K.: On cosets of the generalized first-order Reed-Muller code with low PMEPR. IEEE Trans. Inf. Theory 52(7), 3220–3232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schmidt, K.: Complementary sets, generalized Reed-Muller codes, and power control for OFDM. IEEE Trans. Inf. Theory 53(2), 808–814 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Schmidt, K.: Sequence families with low correlation derived from multiplicative and additive characters. IEEE Trans. Inf. Theory 57(4), 2291–2294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sidel’nikov, V.: Some k-valued pseudo-random sequences and nearly equidistant codes. Probl. Peredachi Informatii (Problems on Information Transmission) 5(1), 16–22 (1969)

    MathSciNet  MATH  Google Scholar 

  59. Sivaswamy, R.: Multiphase complementary codes. IEEE Trans. Inf. Theory 24(5), 546–552 (1978)

    Article  MATH  Google Scholar 

  60. Song, M.K., Song, H.-Y.: A construction of odd length generators for optimal families of perfect sequences. IEEE Trans. Inf. Theory 64(4), 2901–2909 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Song, M.K., Song, H.-Y.: New framework for sequences with perfect autocorrelation and optimal crosscorrelation. IEEE Trans. Inf. Theory 67(11), 7490–7500 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  62. Suehiro, N.: A signal design without co-channel interference for approximately synchronized cdma systems. IEEE J. Sel. Areas Commun. 12(5), 837–841 (1994)

    Article  Google Scholar 

  63. Szöllősi, F.: On quaternary complex hadamard matrices of small orders. Adv. Math. Commun. 5(2), 309 (2011)

    Article  MathSciNet  Google Scholar 

  64. Tang, X., Fan, P., Lindner, J.: Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets. IEEE Trans. Inf. Theory 56, 4038–4045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tang, X., Mow, W.: A new systematic construction of zero correlation zone sequences based on interleaved perfect sequences. IEEE Trans. Inf. Theory 54, 5729–5734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tseng, C., Liu, C.: Complementary sets of sequences. IEEE Trans. Inf. Theory 18(5), 644–652 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  67. Turyn, R.: Ambiguity functions of complementary sequences. IEEE Trans. Inf. Theory 9(1), 46–47 (1963)

    Article  Google Scholar 

  68. Wang, Z., Gong, G.: New sequences design fromWeil representation with low two-dimensional correlation in both time and phase shifts. IEEE Trans. Inf. Theory 57(7), 4600–4611 (2011)

    Article  MATH  Google Scholar 

  69. Wang, Z., Gong, G.: Constructions of complementary sequence sets and complete complementary codes by ideal two-level autocorrelation sequences and permutation polynomials. arXiv:2005.05825, submitted to IEEE Transactions on Information Theory, under revision (2020)

  70. Wang, Z., Gong, G., Yu, N.Y.: Polyphase sequence families with low correlation from the bounds of character sums. IEEE Trans. Inf. Theory 59(6), 3990–3998 (2013)

    Article  MATH  Google Scholar 

  71. Wang, Z., Ma, D., Gong, G., Xue, E.: New construction of complementary sequence (or array) sets and complete complementary codes. IEEE Trans. Inf. Theory 67(7), 4902–4928 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang, Z., Wu, G., Ma, D.: A new method to construct golay complementary set by paraunitary matrices and Hadamard matrices. In: Proc. Sequences and Their Appl., pp 252–263, Chengdu (2016)

  73. Wu, G., Zhang, Y., Liu, X.: New complementary sets of length 2m and size 4. Adv. Math. Commun. 10(4), 825–845 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Yu, N.Y., Gong, G.: Realizations from decimation hadamard transform for special classes of binary sequences with two-level autocorrelation. In: Coding and Cryptography - Lecture Notes in Computer Science, pp 371–385 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.L. Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Surveys (invitation only)

Appendix A: List of Acronyms

Appendix A: List of Acronyms

  • almost perfect nonlinear (APN)

  • authenticated encryption (AE)

  • Butson-type Hadamard (BH)

  • code-division multiple access (CDMA)

  • complementary array set (CAS)

  • complementary sequence set (CSS)

  • complete complementary arrays (CCA)

  • complete complementary codes (CCC)

  • complete mutually orthogonal complementary sets (CMOCS)

  • decimation-Hadamard transform (DHT)

  • discrete Fourier transform (DFT)

  • generalized Boolean function (GBF)

  • generalized Reed-Muller (GRM)

  • Globe Position System (GPS)

  • Golay array pair (GAP)

  • inverse DFT (IDFT)

  • linear feedback shift register (LFSR)

  • millimeter-wave (mm-wave)

  • multi-input multi-output (MIMO)

  • orthogonal frequency division multiplexing (OFDM)

  • orthogonal time frequency space (OTFS)

  • parameter unitary (PU)

  • peak-to-average power ratio (PAPR)

  • peak-to-mean envelope power ratio (PMEPR)

  • quadrature amplitude modulation (QAM)

  • Walsh Hadamard Transform (WHT)

  • Welch-Gong (WG)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, G., Wang, Z. Status of three classes of sequences. Cryptogr. Commun. 15, 257–308 (2023). https://doi.org/10.1007/s12095-022-00585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00585-4

Keywords

Mathematics Subject Classification (2010)