Abstract
This paper presents a formula for the dimension of Galois hulls of constacyclic codes. For this, we have arranged the irreducible factors of xn − λ over the finite field \(\mathbb {F}_{q}\) in a suitable way. Also, considering some restrictions on q, the number of constacyclic codes of length n over \(\mathbb {F}_{q}\) is calculated for a given Galois hull dimension.
Similar content being viewed by others
Change history
22 July 2022
A Correction to this paper has been published: https://doi.org/10.1007/s12095-022-00602-6
References
Assmus, E.F. Jr., Key, J.D.: Affine and projective planes. Discrete Math. 83(2-3), 161–187 (1990)
Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)
Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18(6), 1217–1231 (2012)
Ding, Y., Lu, X.: Galois hulls of cyclic codes over finite fields. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 103-A(1), 370–375 (2020)
Fan, Y., Zhang, L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84(3), 473–492 (2017)
Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)
Islam, H., Prakash, O., Bhunia, D.K.: Quantum codes obtained from constacyclic codes. Internat. J. Theoret. Phys. 5(11), 3945–3951 (2019)
Jitman, S., Sangwisut, E.: The average dimension of the Hermitian hull of constacyclic codes over finite fields of square order. Adv. Math. Commun. 12(3), 451–463 (2018)
Jitman, S., Sangwisut, E.: The average dimension of the Hermitian hull of cyclic codes over finite fields of square order. AIP Proceedings of ICoMEIA 2016, 1775, Article ID 030026 (2016)
Leon, J.S.: Permutation group algorithms based on partitions, I: theory and algorithms. J. Symbolic Comput. 12(4–5), 533–583 (1991)
Leon, J.S., Pless, V., Sloane, N.J.A.: On ternary self-dual codes of length 24. IEEE Trans. Inform. Theory 27(2), 176–180 (1981)
Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)
Liu, X., Fan, Y., Liu, H.: Galois LCD codes over finite fields. Finite Fields Appl. 49, 227–242 (2018)
Liu, H., Pan, X.: Galois hulls of linear codes over finite fields. Des. Codes Cryptogr. 88(2), 241–255 (2020)
Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inform. Theory 43(5), 1602–1604 (1997)
Prakash, O., Yadav, S., Islam, H., Sol´e, P.: On Z4Z4[u3]-additive constacyclic codes. Adv. Math. Commun. (2022). https://doi.org/10.3934/amc.2022017
Sangwisut, E., Jitman, S., Udomkavanich, P.: Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Adv. Math. Commun. 11(3), 595–613 (2017)
Sangwisut, E., Jitman, S., Ling, S., Udomkavanich, P.: Hulls of cyclic and negacyclic codes over finite fields. Finite Fields Appl. 33, 232–257 (2015)
Sendrier, N.: Finding the permutation between equivalent binary codes. In: Proceedings of IEEE ISIT 1997, Ulm, Germany, pp. 367. https://doi.org/10.1109/ISIT.1997.613303 (1997)
Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inform. Theory 46(4), 1193–1203 (2000)
Sendrier, N.: On the dimension of the hull. SIAM J. Discrete Math. 10(2), 282–293 (1997)
Skersys, G.: The average dimension of the hull of cyclic codes. Discrete Appl. Math. 128(1), 275–292 (2003)
Acknowledgements
The authors would like to thank the CSIR, Govt. of India (under grant no. 09/1023(0030)/2019-EMR-I) and DST, Govt. of India (under CRG/2020/005927, vide Diary No. SERB/F/6780/ 2020-2021 dated 31 December, 2020) for providing financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Debnath, I., Prakash, O. & Islam, H. Galois hulls of constacyclic codes over finite fields. Cryptogr. Commun. 15, 111–127 (2023). https://doi.org/10.1007/s12095-022-00591-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-022-00591-6