Skip to main content
Log in

Galois hulls of constacyclic codes over finite fields

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

A Correction to this article was published on 22 July 2022

This article has been updated

Abstract

This paper presents a formula for the dimension of Galois hulls of constacyclic codes. For this, we have arranged the irreducible factors of xnλ over the finite field \(\mathbb {F}_{q}\) in a suitable way. Also, considering some restrictions on q, the number of constacyclic codes of length n over \(\mathbb {F}_{q}\) is calculated for a given Galois hull dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Assmus, E.F. Jr., Key, J.D.: Affine and projective planes. Discrete Math. 83(2-3), 161–187 (1990)

    Article  MATH  Google Scholar 

  2. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)

    Article  MATH  Google Scholar 

  3. Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18(6), 1217–1231 (2012)

    Article  MATH  Google Scholar 

  4. Ding, Y., Lu, X.: Galois hulls of cyclic codes over finite fields. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 103-A(1), 370–375 (2020)

    Article  Google Scholar 

  5. Fan, Y., Zhang, L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84(3), 473–492 (2017)

    Article  MATH  Google Scholar 

  6. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    Article  MATH  Google Scholar 

  7. Islam, H., Prakash, O., Bhunia, D.K.: Quantum codes obtained from constacyclic codes. Internat. J. Theoret. Phys. 5(11), 3945–3951 (2019)

    Article  MATH  Google Scholar 

  8. Jitman, S., Sangwisut, E.: The average dimension of the Hermitian hull of constacyclic codes over finite fields of square order. Adv. Math. Commun. 12(3), 451–463 (2018)

    Article  MATH  Google Scholar 

  9. Jitman, S., Sangwisut, E.: The average dimension of the Hermitian hull of cyclic codes over finite fields of square order. AIP Proceedings of ICoMEIA 2016, 1775, Article ID 030026 (2016)

  10. Leon, J.S.: Permutation group algorithms based on partitions, I: theory and algorithms. J. Symbolic Comput. 12(4–5), 533–583 (1991)

    Article  MATH  Google Scholar 

  11. Leon, J.S., Pless, V., Sloane, N.J.A.: On ternary self-dual codes of length 24. IEEE Trans. Inform. Theory 27(2), 176–180 (1981)

    Article  MATH  Google Scholar 

  12. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Liu, X., Fan, Y., Liu, H.: Galois LCD codes over finite fields. Finite Fields Appl. 49, 227–242 (2018)

    Article  MATH  Google Scholar 

  14. Liu, H., Pan, X.: Galois hulls of linear codes over finite fields. Des. Codes Cryptogr. 88(2), 241–255 (2020)

    Article  MATH  Google Scholar 

  15. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inform. Theory 43(5), 1602–1604 (1997)

    Article  MATH  Google Scholar 

  16. Prakash, O., Yadav, S., Islam, H., Sol´e, P.: On Z4Z4[u3]-additive constacyclic codes. Adv. Math. Commun. (2022). https://doi.org/10.3934/amc.2022017

  17. Sangwisut, E., Jitman, S., Udomkavanich, P.: Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Adv. Math. Commun. 11(3), 595–613 (2017)

    Article  MATH  Google Scholar 

  18. Sangwisut, E., Jitman, S., Ling, S., Udomkavanich, P.: Hulls of cyclic and negacyclic codes over finite fields. Finite Fields Appl. 33, 232–257 (2015)

    Article  MATH  Google Scholar 

  19. Sendrier, N.: Finding the permutation between equivalent binary codes. In: Proceedings of IEEE ISIT 1997, Ulm, Germany, pp. 367. https://doi.org/10.1109/ISIT.1997.613303 (1997)

  20. Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inform. Theory 46(4), 1193–1203 (2000)

    Article  MATH  Google Scholar 

  21. Sendrier, N.: On the dimension of the hull. SIAM J. Discrete Math. 10(2), 282–293 (1997)

    Article  MATH  Google Scholar 

  22. Skersys, G.: The average dimension of the hull of cyclic codes. Discrete Appl. Math. 128(1), 275–292 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CSIR, Govt. of India (under grant no. 09/1023(0030)/2019-EMR-I) and DST, Govt. of India (under CRG/2020/005927, vide Diary No. SERB/F/6780/ 2020-2021 dated 31 December, 2020) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, I., Prakash, O. & Islam, H. Galois hulls of constacyclic codes over finite fields. Cryptogr. Commun. 15, 111–127 (2023). https://doi.org/10.1007/s12095-022-00591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00591-6

Keywords

Mathematics Subject Classification