Abstract
In this paper, we first discuss linear codes over R and present the decomposition structure of linear codes over the mixed alphabet \(\mathbb {F}_{q}R\), where \(R=\mathbb {F}_{q}+u\mathbb {F}_{q}+v\mathbb {F}_{q}+uv\mathbb {F}_{q}\), with u2 = 1,v2 = 1, uv = vu and q = pm for odd prime p, positive integer m. Let 𝜃 be an automorphism on \(\mathbb {F}_{q}\). Extending 𝜃 to Θ over R, we study skew (𝜃,Θ)-(λ,Γ)-constacyclic codes over \(\mathbb {F}_{q}R\), where λ and Γ are units in \(\mathbb {F}_{q}\) and R, respectively. We also show that, the dual of a skew (𝜃,Θ)-(λ,Γ)-constacyclic code over \(\mathbb {F}_{q}R\) is a skew (𝜃,Θ)-(λ− 1,Γ− 1)-constacyclic code over \(\mathbb {F}_{q}R\). We classify some self-dual skew (𝜃,Θ)-(λ,Γ)-constacyclic codes using the possible values of units of R. Also using suitable values of λ,𝜃,Γ and Θ, we present the structure of other linear codes over \(\mathbb {F}_{q} R\). We construct a Gray map over \(\mathbb {F}_{q}R\) and study the Gray images of skew (𝜃,Θ)-(λ,Γ)-constacyclic codes over \(\mathbb {F}_{q}R\). As applications of our study, we construct many good codes, among them, there are 17 optimal codes and 2 near-optimal codes. Finally, we discuss the advantages in a construction of quantum error-correcting codes (QECCs) from skew 𝜃-cyclic codes than from cyclic codes over \(\mathbb {F}_{q}\).
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Abualrub, T., Siap, I., Aydin, N.: \(\mathbb {Z}_{2}\mathbb {Z}_{4}\)-additive cyclic codes. IEEE Trans. Inf. Theory 60(3), 1508–1514 (2014)
Abualrub, T., Ezerman, M.F., Seneviratene, P., Sole, P.: Skew genralized Quasi-cyclic codes. TWMS J. Pure Appl. Math. 9(2) (2018)
Ashraf, M., Mohammad, G.: On skew cyclic codes over a semi-local ring. Discrete Math. Algorithm. Appl. 7(4), 1550042 (2015)
Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \(\mathbb {F}_{p}+v\mathbb {F}_{p}\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}+v\mathbb {F}_{q}+uv\mathbb {F}_{q}\). Quantum Inf. Process 15(10), 4089–4098 (2016)
Ashraf, M., Mohammad, G.: Quantum codes over \(\mathbb {F}_{p}\) from cyclic codes over \(\mathbb {F}_{p}[u, v]/\langle u^{2}-1, v^{3}-v, uv-vu\rangle\). Cryptogr. Commun. 11(2), 325–335 (2019)
Aydogdu, I., Abualrub, T., Siap, I.: On \(\mathbb {Z}_{2}\mathbb {Z}_{2}[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015)
Aydogdu, I., Siap, I.: The structure of \(\mathbb {Z}_{2}\mathbb {Z}_{2^{s}}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013)
Aydogdu, I., Siap, I.: On \(\mathbb {Z}_{p^{r}}\mathbb {Z}_{p^{s}}\)-additive codes. Linear Multilinear Algebra 63(10), 2089–2102 (2015)
Aydogdu, I., Siap, I., Valls, R.T.: \(\mathbb {Z}_{2}\mathbb {Z}_{2}[u^{3}]\)- linear and cycliccodes. Finite Fields Appl. 48, 241–260 (2017)
Aydogdu, I., Abualrub, T., Siap, I.: On \(\mathbb {Z}_{2}\mathbb {Z}_{2}[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2016)
Aydogdu, I., Gursoy, F.: \(\mathbb {Z}_{2}\mathbb {Z}_{4}\mathbb {Z}_{8}\)-Cyclic codes, J. Appl. Math. Comput. (2018). https://doi.org/10.1007/s12190-018-01216-z
Bag, T., Dinh, H.Q., Upadhyay, A.K., Bandi, R, Yamaka, W.: Quantum codes from classes of skew constacyclic codes over the ring \(\mathbb {F}_{q}[u,v]/\langle u^{2}-1,v^{2}-1,uv-vu \rangle\). Discrete Math. 343. (2020). https://doi.org/10.1016/j.disc.2019.111737
Bag, T., Dinh, H.Q., Upadhyay, A.K., Yamaka, W.: New non-binary quantum codes from cyclic codes over product rings. IEEE Commun. Lett. (2020). https://doi.org/10.1109/LCOMM.2019.2959529
Borges, J., Cordoba, C.F., Valls, R.T.: \(\mathbb {Z}_{2}\mathbb {Z}_{4}\)-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory 62(11), 6348–6354 (2016)
Borges, J., Cordoba, C.F., Pujol, J., Rifa, J., Villanueva, M.: \(\mathbb {Z}_{2}\mathbb {Z}_{4}\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system i: The user language. J. Symb. Comp. 24, 235–265 (1997)
Brouwer, A.E., Hamalainen, H.O., Ostergard, P.R.J., Sloane, N.J.A.: Bounds on mixed binary/ternary codes. IEEE Trans. Inf. Theory 44(1), 140–161 (1998)
Blokhuis, A., Brouwer, A.E.: Small additive quaternary codes. European J. Combin. 25, 161–167 (2004)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)
Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Gao, J., Sriboonchitta, S.: Constacyclic codes of length nps over \(\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}\). Adv. Math. Commun. 12, 231–262 (2018)
Cao, Y., Cao, Y., Dinh, H.Q., Jitman, S.: An explicit representation and enumeration for self-dual cyclic codes over \(\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}\) of length 2s. Discrete Math. 342, 2077–2091 (2019)
Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Gao, J., Sriboonchitta, S.: A class of linear codes of length 2 over finite chain rings. J. Algebra Appl. 19, 2050103 (2020)
Cao, Y., Cao, Y., Dinh, H.Q., Fu, F., Ma, F.: Construction and enumeration for self-dual cyclic codes of even length over \(\mathbb {F}_{2^{m}} + u\mathbb {F}_{2^{m}}\). Finite Fields Appl. 61(10), 2020 (1598). https://doi.org/10.1016/j.ffa.2019.101598
Cao, Y., Cao, Y., Dinh, H.Q., Bandi, R., Fu, F.: An explicit representation and enumeration for negacyclic codes of length 2kn over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\), Adv. Math. Commun., https://doi.org/10.3934/amc.2020067 (2020)
Cao, Y., Cao, Y., Dinh, H.Q., Bag, T., Yamaka, W.: Explicit representation and enumeration of repeated-root (δ2 + αu2)-constacyclic codes over \(\mathbb {F}_{2^{m}}[u]/\langle u^{2{\lambda }}\rangle\). IEEE Access 8, 55550–55562 (2020)
Cao, Y., Cao, Y., Dinh, H.Q., Jitman, S.: An efficient method to construct self-dual cyclic codes of length ps over \(\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}\). Discrete Math. 343(11), 2020 (1868)
Dertli, A., Cengellenmis, Y.: Skew cyclic codes over \(\mathbb {F}_{q} + u\mathbb {F}_{q} + v\mathbb {F}_{q}+uv\mathbb {F}_{q}\). J. Sci. Arts 2(39), 215–222 (2017)
Delsarte, P.: An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973)
Delsarte, P., Levenshtein, V.: Association schemes and coding theory. IEEE Trans. Inf. Theory 44(6), 2477–2504 (1998)
Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: Skew constacyclic codes over finite fields and finite chain rings. Math. Probl. Eng. 3965789, 1–17 (2016)
Dinh, H.Q., Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G., Chinnakum, W.: Quantum codes from a class of constacyclic codes over finite commutative rings. J. Algebra Appl. 21(2150003), 1–19 (2021)
Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Chinnakum, W.: On the structure of cyclic codes over \(\mathbb {F}_{q}{RS}\) and applications in quantum and LCD codes constructions. IEEE Access 8 (1), 18902–18914 (2020)
Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Tansuchat, R.: A class of skew cyclic codes and application in quantum codes construction. Discrete Mathematics 344. (2021). , https://doi.org/10.1016/j.disc.2020.112189
Edel, Y.: Some good quantum twisted codes. Online available at https://www.mathi.uni-heidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html. Accessed on 2020-05-23
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de
Jitman, S., Ling, S., Udomkavanich, P.: Skew constacyclic codes over finite chain rings. Adv. Math. Commun. 6, 29–63 (2012)
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb {F}_{4}+u\mathbb {F}_{4}\). Int. J. Quantum Inf. 9(2), 689–700 (2011)
Kim, J.L., Pless, V.: Designs in additive codes over GF(4). Des Codes Cryptogr. 30, 187–199 (2003)
MAGMA Computational Algebra System, http://magma.maths.usyd.edu.au/magma/
McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)
Ozen, M., Ozzaim, N.T., Ince, H.: Skew quasi cyclic codes over \(\mathbb {F}_{q} + v\mathbb {F}_{q}\), J. Algebra Appl., https://doi.org/10.1142/S0219498819500774
Srinivasulu, B., Bhaintwal, M.: \(\mathbb {Z}_{2}(\mathbb {Z}_{2} +u\mathbb {Z}_{2})\)-additive cyclic codes and their duals. Discrete Math. Algorithm. Appl. 8(1650027), 1–9 (2016)
Wu, T., Gao, J., Gao, Y., Fu, F.W.: \(\mathbb {Z}_{2}\mathbb {Z}_{2}\mathbb {Z}_{4}\)-additive cyclic codes. Adv. Math. Commun. 12(4), 641–657 (2018)
Acknowledgements
T. Bag and K. Abdukhalikov are supported by the UAEU Grant G00003490. A part of this paper was prepared when the T. Bag and S. Pathak were in IIT Patna, under financial support from the University Grant Commission (UGC), Govt. of India. A. K. Upadhyay is grateful to SERB DST Govt of India for financial support under MATRICS scheme with file no MTR/2020/000006. H. Q. Dinh and W. Chinnakum’s work have been partially supported by the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Thailand. A part of this paper was written during a stay of H.Q. Dinh in the Vietnam Institute For Advanced Study in Mathematics (VIASM) in Summer 2022, he would like to thank the members of VIASM for their hospitality.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dinh, H.Q., Bag, T., Abdukhalikov, K. et al. On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes. Cryptogr. Commun. 15, 171–198 (2023). https://doi.org/10.1007/s12095-022-00594-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-022-00594-3