Abstract
In this paper, using the classification of degree 7 permutations over \(\mathbb {F}_q\), we classify certain sparse PPs of the form \(P(x)=x^rf(x^{\frac{q^n-1}{q-1}})\) of \(\mathbb {F}_{q^n}\) for \(n=2\) and 3. In particular, we give necessary and sufficient conditions for the polynomial \(f_{a,b}(x):=x(x^{2(q^2+q+1)}+ax^{q^2+q+1}+b)\) in \(\mathbb {F}_{q^3}[x]\) to be a permutation polynomial over \(\mathbb {F}_{q^3}\), where \(q >409\) is a prime power.
Similar content being viewed by others
Availability of supporting data
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Akbary, A., Ghioca, D., Wang, Q.: On permutation polynomials of prescribed shape. Finite Fields Appl. 15, 195–206 (2009)
Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Appl. 17, 51–67 (2011)
Akbary, A., Wang, Q.: On polynomials of the form \(x^rf(x^{(q-1)/l})\). Int. J. Math. Math. Sci. vol. 2007, Article ID 23408, pp. 7 (2007)
Bartoli, D.: Permutation trinomials over \(\mathbb{F} _{q^3}\). Finite Fields Appl. 61, 101597 (2020)
Bartoli, D., Giulietti, M., Zini, G.: On monomial complete permutation polynomials. Finite Fields Appl. 41, 132–158 (2016)
Bartoli, D., Giulietti, M., Quoos, L., Zini, G.: Complete permutation polynomials from exceptional polynomials. J. Number Theory 176, 46–66 (2017)
Bartoli, D., Timpanella, M.: A family of permutation trinomials over \(\mathbb{F} _{q^2}\). Finite Fields Appl. 70, 101781 (2021)
Bartoli, D.: Permutation trinomials over \({\mathbb{F} _{q^3}}\). Finite Fields Appl. 61, 101597 (2020)
Bassalygo, L.A., Zinoviev, V.A.: On one class of permutation polynomials over finite fields of characteristic two. Mosc. Math. J. 15, 703–713 (2015)
Bassalygo, L.A., Zinoviev, V.A.: Permutation and complete permutation polynomials. Finite Fields Appl. 33, 198–211 (2015)
Bhattacharya, S., Sarkar, S.: On some permutation binomials and trinomials over \(F_{2^n}\). Des. Codes Cryptogr. 82, 149–160 (2017)
Blokhuis, A., Coulter, R., Henderson, M., O’Keefe, C.: Permutations amongst the Dembowski-Ostrom polynomials. In: Jungnickel, D., Niederreiter, H. (Eds.) Finite Fields and Applications: Proceedings of the fifth international conference on finite fields and applications 37–42 (2001)
Ding, C., Yuan, J.: A family of skew Hadamard difference sets. J. Comb. Theory, Ser. A 113, 1526–1535 (2006)
Ding, C., Yuan, J.: A family of skew Hadamard difference sets. J. Comb. Theory Ser. A 113, 1526–1535 (2006)
Ding, C., Helleseth, T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory 59, 5898–5904 (2013)
Ding, C., Qu, L., Wang, Q., Yuan, J., Yuan, P.: Permutation trinomials over finite fields with even characteristic. SIAM J. Discrete Math. 29, 79–92 (2015)
Dobbertin :Uniformly representable permutation polynomials. In: Jungnickeland, D., Niederreiter, H., Helleseth, T., Kumar, P.V., Yang, K. (Eds.) Proceedings of sequences and their applications-SETA’01, pp. 1-22. Springer, London (2002)
Fan, X.: A classification of permutation polynomials of degree 7 over finite fields. Finite Fields Appl. 59, 1–21 (2019)
Feng, X., Lin, D., Wang, L., Wang, Q.: Further results on complete permutation monomials over finite fields. Finite Fields Appl. 57, 47–59 (2019)
Fernando, N.: A note on permutation binomials and trinomials over finite fields. New Zealand J. Math. 48, 25–29 (2018)
Fried, M.D., Guralnick, R., Saxl, J.: Schur covers and Carlitz’s conjecture. Isr. J. Math. 82, 157–225 (1993)
Gong, X., Gao, G., Liu, W.: On permutation polynomials of the form \(x^{1+2^k}+L(x)\). International Journal of Computer Mathematics 93, 1715–1722 (2016)
Gupta, R., Sharma, R.K.: Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 41, 89–96 (2016)
Hou, X.: A survey of permutation binomials and trinomials over finite fields. In: Proceedings of the 11th international conference on finite fields and their applications, Contemp. Math., Magdeburg, Germany, July 2013, 632 AMS 177–191 (2015)
Hou, X.: Permutation polynomials over finite fields - a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)
Hou, X., Tu, Z., Zeng, X.: Determination of a class of permutation trinomials in characteristic three. Finite Fields Appl. 61, 101596 (2020)
Işik, L., Winterhof, A.: Carlitz rank and index of permutation polynomials. Finite Fields Appl. 49, 156–165 (2018)
Kyureghyan, G., Zieve, M.: Permutation polynomials of the form \(x+Tr(x^k)\). In: Contemporary developments in finite fields and applications, World Scientific 178–194 (2016)
Laigle-Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)
Laigle-Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)
Li, J., Chandler, D.B., Xiang, Q.: Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2. Finite Fields Appl. 16, 406–419 (2010)
Li, Y., Wang, M.: On EA-equivalence of certain permutations to power mappings. Des. Codes Cryptogr. 58, 259–269 (2011)
Li, N., Helleseth, T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9, 693–705 (2017)
Li, K., Qu, L., Chen, X.: New classes of permutation binomials and permutation trinomials over Finite Fields. Finite Fields Appl. 43, 69–85 (2017)
Li, K., Qu, L., Chen, X., Li, C.: Permutation polynomials of the form \(cx + Tr_q^{q^l}(x^a)\) and permutation trinomials over finite fields with even characteristic. Cryptogr. Commun. 10, 531–554 (2018)
Li, N., Helleseth, T.: New permutation trinomials from Niho exponents over finite fields with even characteristic. Cryptogr. Commun. 11, 129–136 (2019)
Lidl, R., Muller, W.B.: Permutation polynomials in RSA-cryptosystems. Advances in Cryptology, Plenum, New York 293–301 (1984)
Lidl, R., Niederreiter, H.: Finite fields. No. 20. Cambridge university press (1997)
Lidl, R., Muller, W.B.: Permutation polynomials in RSA-cryptosystems. Advances in Cryptology, Plenum, New York 293–301 (1984)
Lidl, R., Mullen, G.L.: When does a polynomial over a finite field permute the elements of the field? Amer. Math. Monthly 95, 243–246 (1988)
Lidl, R., Mullen, G.L.: When does a polynomial over a finite field permute the elements of the field? II. Amer. Math. Monthly 100, 71–74 (1993)
Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge Univ. Press, Cambridge (1997)
Ma, J., Ge, G.: A note on permutation polynomials over finite fields. Finite Fields Appl. 48, 261–270 (2017)
Mullen, G.L.: Permutation polynomials over finite fields. Finite fields, coding theory, and advances in communications and computing, 131–151, Marcel Dekker, New York, (1993)
Müller, P.: A Weil-bound free proof of Schur’s conjecture. Finite Fields Appl. 3, 25–32 (1997)
Mullen, G.L., Wan, D., Wang, Q.: Value sets of polynomial maps over finite fields. Quart. J. Math. 64, 1191–1196 (2013)
Mullen, G.L., Panario, D.: Handbook of Finite Fields, CRC Press, (2014)
Mullen, G.L., Wang, Q.: Permutation polynomials of one variable. Section 8.1 in Handbook of Finite Fields, CRC, (2014)
Mullen, G.L., Wan, D., Wang, Q.: An index bound on value sets of polynomial maps over finite fields. Proceedings of workshop on the occasion of Harald Niederreiter’s 70th Birthday: Applications of algebra and number theory, June 23–27, (2014)
Niederreiter, H., Winterhof, A.: Cyclotomic \(\cal{R} \)-orthomorphisms of finite fields. Discrete Math. 295, 161–171 (2005)
Pang, T., Xu, Y., Li, N., Zeng, X.: Permutation polynomials of the form \(x^d+L(x^s)\) over \(\mathbb{F} _{q^{3}}\). Finite Fields Appl. 76, 101906 (2021)
Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. Bull. Austral. Math. Soc. 63, 67–74 (2001)
Pasalic, E.: On Cryptographically Significant Mappings over \(GF(2^n)\). Arithmetic of finite fields, Springer, Berlin, Heidelberg 189–204 (2008)
Pasalic, E., Charpin, P.: Some results concerning cryptographically significant mappings over \(GF(2^n)\). Des. Codes Cryptogr. 57, 257–269 (2010)
Schwenk, J., Huber, K.: Public key encryption and digital signatures based on permutation polynomials. Electron. Lett. 34, 759–760 (1998)
Sharma, R.K., Gupta, R.: Determination of a type of permutation binomials and trinomials. AAECC 31, 65–86 (2020)
Tu, Z., Zeng, X., Hu, L.: Several classes of complete permutation polynomials. Finite Fields Appl. 25, 182–193 (2014)
Tu, Z., Zeng, X., Li, C., Helleseth, T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195 (2018)
Wan, D., Lidl, R.: Permutation polynomials of the form \(x^rf(x^{(q-1)/d})\) and their group structure. Monatsh. Math. 112, 149–163 (1991)
Wan, D., Wang, Q.: Index bounds for character sums of polynomials over finite fields. Des. Codes Cryptogr. 81, 459–468 (2016)
Wan, D., Wang, Q.: Index bounds for character sums of polynomials over finite fields. Des. Codes Cryptogr. 81, 459–468 (2016)
Wang, Q.: Cyclotomic mapping permutation polynomials over finite fields, sequences, subsequences, and consequences (International Workshop, SSC 2007, Los Angeles, CA, USA, May 31 - June 2, 2007). Lecture notes in Comput. Sci. vol. 4893, pp. 119–128, Springer, Berlin, (2007)
Wang, Q.: Polynomials over finite fields: an index approach. In The proceedings of pseudo-randomness and finite fields, multivariate Algorithms and their foundations in number theory, October 15-19, Linz, 2018, combinatorics and finite fields. Difference Sets, Polynomials, Pseudorandomness and Applications, Degruyter, pp. 319–348 (2019)
Wang, Y., Zhang, W., Zha, Z.: Six new classes of permutation trinomials over \(\mathbb{F} _{2^n}\). SIAM J. Discrete Math. 32, 1946–1961 (2018)
Wang, Y., Zhang, W., Zha, Z.: Six new classes of permutation trinomials over \(\mathbb{F} _{3^{3k}}\). Appl. Algebra Eng. Commun. Comput. 29, 479–499 (2018)
Wu, G., Li, N., Helleseth, T., Zhang, Y.: Some classes of monomial complete permutation polynomials over finite fields of characteristic two. Finite Fields Appl. 28, 148–165 (2014)
Wu, G., Li, N., Helleseth, T., Zhang, Y.: Some classes of complete permutation polynomials over \(\mathbb{F} _{q}\). Sci. China Math. 58, 2081–2094 (2015)
Wu, D., Yuan, P., Ding, C., Ma, Y.: Permutation trinomials over \({\mathbb{F} _{q^2}}\). Finite Fields Appl. 46, 38–56 (2017)
Zha, Z., Hu, L., Fan, S.: Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 45, 43–52 (2017)
Zha, Z., Hu, L., Zhang, Z.: Permutation polynomials of the form \(x+\gamma Tr_q^{q^n}(h(x))\). Finite Fields Appl. 60, 101573 (2019)
Zieve, M.E.: On some permutation polynomials over \(\mathbb{F} _{q} \) of the form \(x^{r}h\left(x^{(q-1)/d}\right)\). Proc. Am. Math. Soc. 137, 2209–2216 (2009)
Funding
Qiang Wang is supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-06410). Luciane Quoos thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES for the partial support of this research.
Author information
Authors and Affiliations
Contributions
All authors have contributed equally to the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors’ have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gupta, R., Quoos, L. & Wang, Q. Some classes of permutation binomials and trinomials of index \(q-1\) over \({\mathbb {F}_{q^n}}\). Cryptogr. Commun. 16, 387–402 (2024). https://doi.org/10.1007/s12095-023-00674-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-023-00674-y