Skip to main content
Log in

The Griesmer codes of Belov type and optimal quaternary codes via multi-variable functions

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We study the Griesmer codes of specific Belov type and construct families of distance-optimal linear codes over \({\mathbb {Z}_4}\) by using multi-variable functions. We first show that the pre-images of specific Griesmer codes of Belov type under a Gray map \(\phi \) from \({\mathbb {Z}_4}\) to \(\mathbb {Z}_2^2\) are non-linear except one case. Therefore, we are interested in finding subcodes of Griesmer codes of specific Belov type with maximum possible dimension whose pre-images under \(\phi \) are still linear over \({\mathbb {Z}_4}\) such that they also have good properties such as optimality and two-weight. To this end, we introduce a new approach for constructing linear codes over \({\mathbb {Z}_4}\) using multi-variable functions over \(\mathbb {Z}\). This approach has an advantage in explicitly computing the Lee weight enumerator of a linear code over \({\mathbb {Z}_4}\). Furthermore, we obtain several other families of distance-optimal two-weight linear codes over \({\mathbb {Z}_4}\) by using a variety of multi-variable functions. We point out that some of our families of distance-optimal codes over \({\mathbb {Z}_4}\) have linear binary Gray images which are also distance-optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aydin, N., Asamov, T.: Database of \(\mathbb{Z}_4\) codes [online], http://quantumcodes.info/Z4, Apr. 15, 2022

  2. Belov, B.I.: A conjecture on the Griesmer boundary (Russian) optimization methods and their applications, All-Union Summer Sem. Khakusy, Lake Baikal 182, 100–106 (1972)

    Google Scholar 

  3. Borges, J., Phelps, K.T., Rifà, J., Zinoviev, V.A.: On \(\mathbb{Z} _4\)-linear Preparata-like and Kerdock-like codes. IEEE Trans. Inf. Theory 49(11), 2834–2843 (2003)

    Article  Google Scholar 

  4. Borges, J., Phelps, K.T., Rifà, J.: The rank and kernel of extended 1-perfect \(\mathbb{Z} _4\)-linear and additive non-\(\mathbb{Z} _4\)-linear codes. IEEE Trans. Inf. Theory 49(8), 2028–2034 (2003)

    Article  Google Scholar 

  5. Byrne, E., Greferath, M., Honold, T.: Ring geometries, two-weight codes and strongly regular graphs. Des. Codes Cryptogr. 48(1), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  6. Calderbank, R.: On uniformly packed \([n, n-k, 4]\) codes over \(GF(q)\) and a class of caps in \(\operatorname{PG}(k-1, q)\). J. London Math. Soc. (2) 26(2), 365–384 (1982)

    Article  MathSciNet  Google Scholar 

  7. Calderbank, R., Kantor, W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 365-384. 18(2), 97–122 (1986)

    Article  MathSciNet  Google Scholar 

  8. Delsarte, P.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64 (1972)

    Article  MathSciNet  Google Scholar 

  9. Hammons, R., Kumar, V.P., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \(\mathbb{Z} _4\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994)

    Article  Google Scholar 

  10. Hou, X., Lahtonen, J., Koponen, S.: The Reed-Muller code R(r, m) is not \(\mathbb{Z} _4\)-linear for \(3 < r < m-2\). IEEE Trans. Inf. Theory 44(2), 798–799 (1998)

    Article  Google Scholar 

  11. Huffman, W.C., Pless, V.: Fundamentals of Error Correcting codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  12. Hyun, J.Y., Lee, J., Lee, Y.: Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Trans. Inf. Theory 66(11), 6762–6773 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hyun, J.Y., Kim, B., Na, M.: Construction of minimal linear codes from multi-variable functions. Adv. Math. Commun. 15(2), 227–240 (2021)

    Article  MathSciNet  Google Scholar 

  14. Krotov, D.S.: \(\mathbb{Z} _4\)-linear perfect codes. Diskretn. Anal. Issled. Oper. Ser. 1 7(4), 78–90 (2000)

    MathSciNet  Google Scholar 

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1977)

    Google Scholar 

  16. Pernas, J., Pujol, J., Villanueva, M.: Classification of some families of quaternary Reed-Muller codes. IEEE Trans. Inform. Theory 57(9), 6043–6051 (2011)

    Article  MathSciNet  Google Scholar 

  17. Pujol, J., Rifà, J., Solová, F.I.: Construction of \(\mathbb{Z} _4\)-linear Reed-Muller codes. IEEE Trans. Inf. Theory 55(1), 99–104 (2009)

    Article  Google Scholar 

  18. Shi, M., Alahmadi, A., Solé, P.: Codes and rings. Academic Press, London, Theory and practice (2017)

    Google Scholar 

  19. Shi, Minjia, Honold, Thomas, Solé, Patrick, Qiu, Yunzhen, Rongsheng, Wu., Sepasdar, Zahra: The Geometry of Two-Weight Codes Over \(\mathbb{Z} _{p^m}\). IEEE Trans. Inf. Theory 67(12), 7769–7781 (2021)

    Article  Google Scholar 

  20. Shi, Minjia, Qian, Liqin, Sok, Lin, Aydin, Nuh, Solé, Patrick: On constacyclic codes over \(\mathbb{Z} _4 [u] / \langle u^2 - 1 \rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)

    Article  MathSciNet  Google Scholar 

  21. Shi, M., Sepasdar, Z., Alahmadi, A., Solé, P.: On two-weight \(\mathbb{Z} _{2^k}\)-codes. Des. Codes Cryptogr. 86(6), 1201–1209 (2018)

    Article  MathSciNet  Google Scholar 

  22. Solomon, G., Stiffler, J.J.: Algebraically punctured cyclic codes. Inf. Control 8(2), 170–179 (1965)

    Article  MathSciNet  Google Scholar 

  23. Shi, M., Wang, Y.: Optimal binary codes from one-Lee weight codes and two-Lee weight projective codes over \(\mathbb{Z} _4\). J. Syst. Sci. Complex. 27(4), 795–810 (2014)

    Article  MathSciNet  Google Scholar 

  24. Shi, M., Xuan, W., Solé, P.: Two families of two-weight codes over \(\mathbb{Z} _4\). Des. Codes Cryptogr. 88(12), 2493–2505 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zhu, X., Wu, Y., Yue, Q.: New Quaternary Codes Derived from Posets of the Disjoint Union of Two Chains. IEEE Comm. Lett. 24(1), 20–24 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jong Yoon Hyun, Nayoung Han and Yoonjin Lee wrote the main manuscript, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Yoonjin Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yoonjin Lee is the corresponding author and supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2019R1A6A1A11051177) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)(NRF-2022R1A2C1003203). Nayoung Han is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2020R1A6A3A13065516).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, J.Y., Han, N. & Lee, Y. The Griesmer codes of Belov type and optimal quaternary codes via multi-variable functions. Cryptogr. Commun. 16, 579–600 (2024). https://doi.org/10.1007/s12095-023-00686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-023-00686-8

Keywords

Mathematics Subject Classification (2010)

Navigation