Skip to main content
Log in

Enumeration formulae for self-orthogonal, self-dual and complementary-dual additive cyclic codes over finite commutative chain rings

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Let RS be two finite commutative chain rings such that R is the Galois extension of S of degree \(r \ge 2\) and has a self-dual basis over S. Let q be the order of the residue field of S,  and let N be a positive integer with \(\gcd (N,q)=1.\) An S-additive cyclic code of length N over R is defined as an S-submodule of \(R^N,\) which is invariant under the cyclic shift operator on \(R^N.\) In this paper, we show that each S-additive cyclic code of length N over R can be uniquely expressed as a direct sum of linear codes of length r over certain Galois extensions of the chain ring S,  which are called its constituents. We further study the dual code of each S-additive cyclic code of length N over R by placing the ordinary trace bilinear form on \(R^N\) and relating the constituents of the code with that of its dual code. With the help of these canonical form decompositions of S-additive cyclic codes of length N over R and their dual codes, we further characterize all self-orthogonal, self-dual and complementary-dual S-additive cyclic codes of length N over R in terms of their constituents. We also derive necessary and sufficient conditions for the existence of a self-dual S-additive cyclic code of length N over R and count all self-dual and self-orthogonal S-additive cyclic codes of length N over R by considering the following two cases: (I) both qr are odd, and (II) q is even and \(S=\mathbb {F}_{q}[u]/\langle u^e \rangle .\) Besides this, we obtain the explicit enumeration formula for all complementary-dual S-additive cyclic codes of length N over R. We also illustrate our main results with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bágio, D., Dias, I., Paques, A.: On self-dual normal bases. Indag. Math. 17(1), 1–11 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betty, R.A., Munemasa, A.: A mass formula for self-orthogonal codes over \(\mathbb{Z} _{p^2}\). J. Combinator. Inform. Syst. Sci. 34, 51–66 (2009)

    MATH  Google Scholar 

  3. Bini, G., Flamini, F.: Finite commutative rings and their applications. Kluwer Academic Publishers, Boston (2002)

    Book  MATH  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderbank, A.R., Sloane, N.J.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, Y., Gao, J., Fu, F.W., Cao, Y.: Enumeration and construction of additive cyclic codes over Galois rings. Discrete Math. 338(6), 922–937 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dougherty, S.T., Kim, J.L., Liu, H.: Constructions of self-dual codes over finite commutative chain rings. Int. J. Inf. Coding Theory 1(2), 171–190 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Grove, L.C.: Classical groups and geometric algebra. American Mathematical Society, Providence, Rhode Island (2008)

    MATH  Google Scholar 

  9. Guenda, K. and Gulliver, T.A.: Quantum codes over rings. Int. J. Quantum Inf. 12(04), Article no. 1450020 (2014)

  10. Hammons Jr, A.R., Kumar, P.V., Calderbank, A. R., Sloane, N.J.A., Solé, P.: The \(\mathbb{Z}_4\)-linearity Kerdock. Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40, 301-319 (1994)

  11. Honold, T., Landjev, I.: Linear codes over finite chain rings. Electron. J. Combin. 7, Article no. R11, (2000)

  12. Honold, T., Landjev, I.: Linear codes over finite chain rings and projective Hjelmslev geometries. Proc. CIMPA Summer School - Codes over rings 6, 60–123 (2009)

  13. Huffman, W.C.: Additive cyclic codes over \(\mathbb{F} _4\). Adv. Math. Commun. 1(4), 427–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huffman, W.C.: Additive cyclic codes over \(\mathbb{F} _4\). Adv. Math. Commun. 2(3), 309–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huffman, W.C.: Cyclic \(\mathbb{F} _q\)-linear \(\mathbb{F} _{q^t}\)-codes. Int. J. Inf. Coding Theory 1(3), 249–284 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Huffman, W.C.: On the theory of \(\mathbb{F} _q\)-linear \(\mathbb{F} _{q^t}\)-codes. Adv. Math. Commun. 7(3), 349–378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jitman, S., Udomkavanich, P.: The Gray image of codes over finite chain rings. Int. J. Contemp. Math. Sciences 5(10), 449–458 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Kaur, T., Sharma, A.: Constacyclic additive codes over finite fields. Discrete Math. Algorithms Appl. 9(3), Article no. 1750037, (2017)

  19. Lang, S.: Undergraduate algebra. Springer-Verlag, New York (1990)

    Book  MATH  Google Scholar 

  20. Mahmoudi, S., Samei, K.: Cyclic \(R\)-additive codes. Discrete Math. 340, 1657–1668 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mahmoudi, S., Samei, K.: Additive codes over Galois rings. Finite Fields Appl. 56, 332–350 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. McDonald, B.R.: Finite rings with identity. Marcel Dekker, New York (1974)

    MATH  Google Scholar 

  23. Martinez-Moro, E., Otal, K., Özbudak, F.: Additive cyclic codes over finite commutative chain rings. Discrete Math. 341(7), 1873–1884 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Norton, G.H., Sălăgean, A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Engrg. Comm. Comput. 10, 489–506 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peterson, W.W., Brown, D.T.: Cyclic codes for error detection. Proceedings of the IRE 49(1), 228–235 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pless, V.: On the uniqueness of the Golay codes. J. Comb. Theory 5(3), 215–228 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Seroussi, G., Lempel, A.: Factorization of symmetric matrices and trace-orthogonal bases in finite fields. SIAM J. Comput. 9(4), 758–767 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sharma, A., Kaur, T.: On cyclic \(\mathbb{F} _q\)-linear \(\mathbb{F} _{q^t}\)-codes. Int. J. Inf. Coding Theory 4(1), 19–46 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Sharma, A., Kaur, T.: Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields. Cryptogr. Commun. 10, 401–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharma, A., Kaur, T.: Enumeration of complementary-dual cyclic \(\mathbb{F} _q\)-linear \(\mathbb{F} _{q^t}\)-codes. Discrete Math. 341(4), 965–980 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sidana, T., Kashyap, N.: Entanglement-assisted quantum error-correcting codes over local Frobenius rings, arXiv:2202.00248 (2022)

  32. Taylor, D.E.: The geometry of the classical groups, Sigma Series in Pure Mathematics, Heldermann Verlag (1992)

  33. Wan, Z.X.: Lectures on finite fields and Galois rings. World Scientific Publishing, New Jersey (2012)

    MATH  Google Scholar 

  34. Yadav, M., Sharma, A.: Mass formulae for Euclidean self-orthogonal and self-dual codes over finite commutative chain rings. Discrete Math. 344(1), 1–24 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yadav, M., Sharma, A.: On the enumeration and classification of \(\sigma \)-LCD codes over finite commutative chain rings. Discrete Math. 345(8), 1–25 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yadav, M., Sharma, A.: A recursive method for the construction and enumeration of self-orthogonal and self-dual codes over the quasi-Galois ring \(\mathbb{F} _{2^r}[u]/\langle u^e\rangle \). Des. Codes Cryptogr. 91(5), 1973–2003 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Leijo Jose research support by the National Board for Higher Mathematics (NBHM), India, under Grant no. 0203/13(46)/2021-R &DII/13176, is gratefully acknowledged. Anuradha Sharma research support by the Department of Science and Technology, India, under the Grant no. DST/INT/RUS/RSF/P-41/2021 with TPN 65025, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding author

Correspondence to Anuradha Sharma.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, L., Sharma, A. Enumeration formulae for self-orthogonal, self-dual and complementary-dual additive cyclic codes over finite commutative chain rings. Cryptogr. Commun. 16, 1383–1416 (2024). https://doi.org/10.1007/s12095-024-00728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-024-00728-9

Keywords

Mathematics Subject Classification (2010)