Skip to main content

Advertisement

Log in

Sea level in the Mediterranean Sea: seasonal adjustment and trend extraction within the framework of SSA

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The sea level change is a crucial indicator of our climate. The spatial sampling offered by satellite altimetry and its continuity during the past years are the major assets to provide an improved vision of the Mediterranean sea level changes. In this paper, an automatic signal extraction approach, based on Singular Spectrum Analysis (SSA), is utilized for analysis and seasonal adjustment of the Mediterranean Sea level series. This automatic approach enables us to overcome the difficulties of visual identification of trend constituents that sometimes we encounter when using the conventional SSA method. The results indicate that the Mediterranean mean sea level is dominated by several harmonic components. The annual signal is particularly strong and almost covers 73.62 % of the original sea level series variation whiles its amplitude is about 15 cm. The extracted trend also indicates that the Mediterranean main sea level has significantly been raised during the period 1993–2012 by 2.44 ± 0.4 mm yr−1. As an important consequence, considering the current situation, if this trend continues, the Mediterranean Sea level will be raised about 22 cm by the end of this century, which makes a dramatic effect on several issues such as land, flora, fauna, and people activities established along the Mediterranean coastlines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. TOPEX. Ocean TOPography Experiment

  2. NASA. National Aeronautics and Space Administration - USA

  3. Available at http://www.pdmi.ras.ru/~theo/autossa

References

  • Ablain M, Cazenave A, Guinehut S, Valladeau G (2009) A new assessment of global mean sea level from altimeters highlights a reduction of global slope from 2005 to 2008 in agreement with in situ measurements. Ocean Sci 5:193–201

    Article  Google Scholar 

  • Alexandrov T (2006) Software package for automatic extraction and forecast of additive components of time series in the framework of the Caterpillar-SSA approach, PhD thesis, St. Petersburg State University. [In Russian]. http://www.pdmi.ras.ru/_theo/autossa

  • Alexandrov T (2009) A method of trend extraction using singular spectrum analysis. RevStat-Stat J 7(1):1–22

    Google Scholar 

  • Alexandrov T, Golyandina N (2005) Automatic extraction and forecast of time series cyclic components within the framework of SSA. In Proc. of the 5th St.Petersburg Workshop on Simulation, 45–50

  • Alexandrov T, Bianconcini S, Dagum EB, Maass P, McElroy T (2008) A review of some modern approaches to the problem of trend extraction. U.S. Census Bureau, Statistical Research Division, Research Report Series, Statistics #2008-3. http://www.census.gov/srd/papers/pdf/rrs2008-03.pdf

  • Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9:3373–404

    Article  Google Scholar 

  • Béthoux JP, Gentili B (1999) Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes. J Mar Syst 20:33–47

    Article  Google Scholar 

  • Béthoux JP, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662

    Article  Google Scholar 

  • Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J Int 33(3):253–264

    Article  Google Scholar 

  • Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J R Astron Soc 23(1):45–73

    Article  Google Scholar 

  • Caseiro P, Fonseca-Pinto R, Andrade A (2010) Screening of obstructive sleep apnea using Hilbert-Huang decomposition of oronasal airway pressure recordings. Med Eng Phys 32(6):561–568

    Article  Google Scholar 

  • Chau K-W, Wu CL, Li YS (2005) Comparison of several flood forecasting models in Yangtze river. J Hydrol Eng ASCE 10(6):485–491. doi:10.1061/(ASCE)1084-0699(2005)10:6(485)

    Article  Google Scholar 

  • Chen W, Chau K-W (2006) Intelligent manipulation and calibration of parameters for hydrological models. Int J Environ Pollut 28(3–4):432–447

    Article  Google Scholar 

  • Cheng CT, Chau K-W (2001) Fuzzy iteration methodology for reservoir flood control operation. J Am Water Resour Assoc 37(5):1381–1388

    Article  Google Scholar 

  • Coughlin KT, Tung KK (2004) 11-Year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Adv Space Res 34:323–329

    Article  Google Scholar 

  • Danilov D, Zhigljavsky A (eds) (1997) Principal components of time series: The ‘Caterpillar’ method. University of St. Petersburg, St. Petersburg [in Russian]

    Google Scholar 

  • Ding H, Huang Z, Song Z, Yan Y (2007) Hilbert–Huang transform based signal analysis for the characterization of gas–liquid two phase flow. Flow Meas Instrum 18:37–46

    Article  Google Scholar 

  • Fereydooni M, Rahnemaei M, Babazadeh H, Sedghi H, Elhami MR (2012) Comparison of artificial neural networks and stochastic models in river discharge forecasting, (Case study: Ghara- Aghaj River, Fars Province, Iran). Afr J Agric Res 7(40):5446–5458. doi:10.5897/AJAR11.1091

    Google Scholar 

  • Flandrin P, Goncalves P, Rilling G (2004) Detrending and denoising with empirical mode decomposition. in EUSIPCO 2004, September 6–10, Vienna, Austria. http://perso.ens-lyon.fr/patrick.flandrin/EUSIPCO04_PFPGGR.pdf

  • Ghodsi M, Hassani H, Sanei S, Hicks Y (2009) The use of noise information for detection of temporomandibular disorder. J Biomed Signal Process Control 4(2):79–85

    Article  Google Scholar 

  • Ghodsi M, Hassani H, Sanei S (2010) Extracting fetal heart signal from noisy maternal ECG by singular spectrum analysis. Stat Interface 3(3):399–411

    Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  • Haddad M, Taibi H, Mohammed Arezki SM (2013) On the recent global mean sea level changes: Trend extraction and El Nino’s impact. Comptes rendus geoscience. In press. doi :10.1016/j.crte.2013.03.002

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257

    Google Scholar 

  • Hassani H (2009) Singular spectrum analysis based on the minimum variance estimator. Nonlinear Anal Real World Appl 11(3):2065–2077

    Article  Google Scholar 

  • Hassani H, Thomakos D (2010) A review on singular spectrum analysis for economic and financial time series. Stat Interface 3(3):377–397

    Google Scholar 

  • Hassani H, Zhigljavsky A (2009) Singular spectrum analysis: methodology and application to economics data. J Syst Sci Complex 22(3):372–394

    Article  Google Scholar 

  • Hassani H, Dionisio A, Ghodsi M (2009a) The effect of noise reduction in measuring the linear and nonlinear dependency of financial markets. Nonlinear Anal Real World Appl 11(1):492–502

    Article  Google Scholar 

  • Hassani H, Heravi S, Zhigljavsky A (2009b) Forecasting European industrial production with singular spectrum analysis. Int J Forecast 25(1):103–118

    Article  Google Scholar 

  • Hassani H, Soofi A, Zhigljavsky A (2009c) Predicting daily exchange rate with singular spectrum analysis. Nonlinear Anal Real World Appl 11(3):2023–2034

    Article  Google Scholar 

  • Hassani H, Mahmoudvand R, Yarmohammadi M (2010) Filtering and denoising in the linear regression model. Fluctuation Noise Lett 9(4):343–358

    Article  Google Scholar 

  • Hassani H, Zhigljavsky A, Zhengyuan X (2011) Singular spectrum analysis based on the perturbation theory. Nonlinear Anal Real World Appl 12(5):2752–2766

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The Empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time-series analysis. Proc R Soc Lond A 454(1971):903–995. doi:10.1098/rspa.1998.0193

  • Huang W, Shen Z, Huang NE, Fung YC (1998) Use of intrinsic modes in biology: examples of indicial response of pulmonary blood pressure to ± step hypoxia. Proc Natl Acad Sci U S A 95(22):12766–12771

    Google Scholar 

  • Huang W, Sher YP, Peck K, Fung CB (2002) Matching gene activity with physiological functions. Proc Natl Acad Sci U S A 99(5):2603–2608

    Article  Google Scholar 

  • Huang NE, Wu M-L, Qu W, Long SR, Shen SSP (2003) Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl Stoch Model Bus Ind 19(3):245–268. doi:10.1002/asmb.501

    Article  Google Scholar 

  • Hubick KT (1992) Artificial neural networks in Australia. Department of industry, Technology & Commerce, Canberra, p 132

  • Landerer FW, Volkov DL (2013) The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophysical Research Letters 40:553–557. doi:10.1002/grl.50140

    Google Scholar 

  • Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46:1513–1540. doi:10.1016/j.asr.2010.05.007

    Article  Google Scholar 

  • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variable: a review of modeling issues and application. Environ Model Softw 15(1):101–124

    Article  Google Scholar 

  • Maier HR, Morgan N, Chow CWK (2004) Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environ Model Softw 19(5):485–494

    Article  Google Scholar 

  • Mhamdi F, Poggi J-M, Jaidane M (2010) Empirical mode decomposition for trend extraction: application to electrical data. Proc COMPSTAT 454:1391–1398, Paris

    Google Scholar 

  • Mhamdi F, Poggi J-M, Jaїdane M (2011) Trend extraction for seasonal time series using ensemble empirical mode decomposition. Adv Adapt Data Anal 3(3):363–383. doi:10.1142/S1793536911000696

    Article  Google Scholar 

  • Moghtaderi A, Borgnat P, Flandrin P (2011) Trend filtering: Empirical mode decompositions versus ℓ1 and Hodrick-Prescott. Adv Adapt Data Anal 3(1&2):41–61. doi:10.1142/S1793536911000751

    Article  Google Scholar 

  • Moghtaderi A, Flandrin P, Borgnat P (2013) Trend filtering via empirical mode decompositions. Comput Stat Data Anal 58:114–126

    Article  Google Scholar 

  • Mudelsee M (2010) Climate time series analysis: Classical statistical and bootstrap methods. Springer, Dordrecht

    Book  Google Scholar 

  • Muttil N, Chau KW (2006) Neural network and genetic programming for modelling coastal algal blooms. Int J Environ Pollut 28(3–4):223–238

    Article  Google Scholar 

  • Nerem RS, Chambers D, Choe C, Mitchum GT (2010) Estimating mean Sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(sup1):435–446. doi:10.1080/01490419.2010.491031

    Article  Google Scholar 

  • Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: Validation with tide gauge and altimetry data. J Geophys Res 113(C7):11–16. doi:10.1029/2007JC004459

    Article  Google Scholar 

  • Peltier WR (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea level history. International Geophysics. Sea Level Rise—History and Consequences ed. 75:65–95. doi:10.1016/S0074-6142(01)80007-3

  • Peltier WR (2002) Global glacial isostatic adjustment: palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model. J Quat Sci 17(5–6):491–510

    Article  Google Scholar 

  • Peltier WR (2009) Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment. Quat Sci Rev 28:1658–1674

    Article  Google Scholar 

  • Peltier WR, Luthcke SB (2009) On the origins of Earth rotation anomalies: New insights on the basis of both “paleogeodetic” data and Gravity Recovery and Climate Experiment (GRACE) data. J Geophys Res 114(B11)

  • Quek T, Tua S, Wang Q (2003) Detecting anomalies in beams and plate based on the Hilbert-Huang transform of real signals. Smart Mater Struct 12:447–460

    Article  Google Scholar 

  • Rao R, Hsu E-C (2008) Hilbert-Huang transform analysis of hydrological and environmental time series. Water Sci Technol Libr 60

  • Ray RD (1999) A Global Ocean Tide Model From TOPEX/Poseidon Altimetry: GOT99.2. NASA Techincal Memo 1999–209478, 58 pp. NASA Goddard Space Flight Center

  • Roether W, Manca BB, Klein B, Bregant D, Georgopoulos D, Beitzel V, Kovacevic V, Luchetta A (1996) Recent changes in Eastern Mediterranean deep waters. Science 271:333–335

    Article  Google Scholar 

  • Rohling E, Bryden H (1992) Man-induced salinity and temperature increases in the Western Mediterranean Deep Water. J Geophys Res 97:11191–11198

    Article  Google Scholar 

  • Ross T, Garrett C, Le Traon PY (2000) Western Mediterranean sea-level rise: changing exchange flow through the Strait of Gibraltar. Geophys Res Lett 27:2949–2952

    Article  Google Scholar 

  • Salisbury J, Sun Y (2007) Rapid screening test for sleep apnea using a nonlinear and nonstationary signal processing technique. Med Eng Phys 29(3):336–43

    Article  Google Scholar 

  • Suling J, Yanqin G, Qiang W, Jian Z (2009) Trend extraction and similarity matching of financial time series based on EMD method. CSIE ’09 Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering 4:526–530. doi:10.1109/CSIE.2009.654

  • Tang J, Zou Q, Tang Y, Liu B, Zhang XK (2007) Hilbert-Huang Transform for ECG De-Noising. Proceedings of the 1st International Conference on Bioinformatics and Biomedical Engineering (ICBBE) 8:664–667. doi:10.1109/ICBBE.2007.173

  • Taormina R, Chau K-W, Sethi R (2012) Artificial Neural Network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng Appl Artif Intell 25(8):1670–1676

    Article  Google Scholar 

  • Task Committee ASCE (2000) Artificial neural networks in hydrology. Preliminary concepts. J Hydrol Eng ASCE 5(2):115–123

    Article  Google Scholar 

  • Tran N, Labroue S, Philipps S, Bronner E, Picot N (2010) Overview and update of the Sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar Geod 33(1,1):348

    Article  Google Scholar 

  • Tsimplis MN, Baker TF (2000) Sea level drop in the Mediterranean Sea: an indicator of deep water salinity and temperature changes? Geophys Res Lett 27(12):1731–1734

    Article  Google Scholar 

  • Tsimplis M, Marcos M, Somot S (2008) 21st Century Mediterranean Sea level rise: steric and atmosphere pressure contributions from a regional model. Glob Planet Chang 63(2–3):105–111

    Article  Google Scholar 

  • Wahr JM (1985) Deformation induced by polar motion. J Geophys Res 90(B11):9363

    Article  Google Scholar 

  • Wu Z, Huang NE, Long SR, Peng C-K (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci 104(38):14889–14894. doi:10.1073/pnas.0701020104

    Article  Google Scholar 

  • Wu CL, Chau K-W, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45:W08432. doi:10.1029/2007WR006737

    Article  Google Scholar 

  • Xun J, Yan S (2008) A revised Hilbert–Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure. Mech Syst Signal Process 22:1705–1723

    Article  Google Scholar 

  • Zhang RR, Ma S, Safak E, Hartzell S (2003) Hilbert-Huang transform analysis of dynamic and earthquake motion recordings. J Eng Mech 129:861–875

    Article  Google Scholar 

Internet/Web sites

Download references

Acknowledgments

We are very grateful to Dr. Theodore Alexandrov for providing the AutoSSA computer program. We also thank the Colorado Center for Astrodynamics Research of the University of Colorado—Boulder for providing the Mediterranean Sea level time series. We are enormously grateful to the reviewers for helpful comments and suggestions that led us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Haddad.

Additional information

Communicated by: Hassan Babaie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, M., Hassani, H. & Taibi, H. Sea level in the Mediterranean Sea: seasonal adjustment and trend extraction within the framework of SSA. Earth Sci Inform 6, 99–111 (2013). https://doi.org/10.1007/s12145-013-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-013-0114-6

Keywords

Navigation