Skip to main content
Log in

Endmember orthonormal mapping in hyperspectral mixture analysis to address endmember variability

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Spectral unmixing estimates the abundance of each endmember at every pixel of a hyperspectral image. Each material in traditional unmixing algorithms is represented through a constant spectral signature. However, endmember variability always exists due to environmental, atmospheric, and temporal conditions, which leads to poor accuracy of the estimated abundances. This paper proposes a new unmixing algorithm based on a new linear transformation called endmember orthonormal mapping (EOM) to overcome the aforementioned problem. The EOM transformation maps original spectral space to a new EOM space to reduce endmember variability. In the original spectral space, each material is represented by a set of spectra (endmember set) which is extracted using the automated endmember bundles (AEB) method. The EOM transforms each endmember set to a vector in the EOM space so that these vectors are orthonormal. On account of orthonormalized endmembers, the condition number of the mixing matrix in the EOM space reduces. Furthermore, we consider the noise term as an additional virtual endmember set mapped to a vector that is orthogonal to other endmembers. As a result, a promising unmixing accuracy is obtained through applying the least squares abundance estimation in the subspace orthogonal to noise. Experimental results of both synthetic and real hyperspectral images demonstrate that the proposed algorithms provide much enhanced performance compared with the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Acito N, Diani M, Corsini G (2011) Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images. IEEE Trans Geosci Remote Sens 49:2957–2971

    Article  Google Scholar 

  • Antia HM (2002) Numerical methods for scientists and engineers. Volume 1, Springer Science & Business Media

  • Bateson CA, Asner GP, Wessman CA (2000) Endmember Bundles: A New Approach to Incorporating Endmember Variability into Spectral Mixture Analysis. IEEE Trans Geosci Remote Sens 38(2):1083

    Article  Google Scholar 

  • Bioucas-Dias JM, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Select Top Appl Earth Obs Remote Sens (JSTARS) 5(2):354–379

    Article  Google Scholar 

  • Chang C (2000) An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans Inf Theory 46:1927–1932. doi:10.1109/18.857802

    Article  Google Scholar 

  • Chang C, Ji B (2006) Weighted Abundance-Constrained Linear Spectral Mixture Analysis. IEEE Trans Geosci Remote Sens 44:378–388

    Article  Google Scholar 

  • Chang C, Wu C, Liu W, Ouyang Y (2006) A new growing method for simplex-based endmember extraction algorithm. IEEE Trans Geosci Remote Sens 44(10)

  • Cho MA, Debba P, Mathieu R, Van Aardt J, Asner G, Naidoo L, Main R, Ramoelo A, Majeke B (2009) Spectral variability within species and its effects on Savanna tree species discrimination. Geoscience Remote Sensing Symp (IGARSS), IEEE Int 2:II-190–II-193. doi:10.1109/IGARSS.2009.5418038

    Google Scholar 

  • Du X, Zare A, Gader P, Dranishnikov D (2014) Spatial and Spectral Unmixing Using the Beta Compositional Model. IEEE J Select Top Appl Earth Obs Remote Sens (JSTARS) 7(6):1994–2003

    Article  Google Scholar 

  • Ebadi L, Shafri HZM (2014) A stable and accurate wavelet-based method for noise reduction from hyperspectral vegetation spectrum. Earth Sci Informatics

  • Erer I, Kent S, Kartal M, Kargin S (2004) Superresolution bistatic spotlight sar imaging using image fusion. Proceedings of E USAR, 787–790

  • Gao BC (1993) An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers. Remote Sens Environ 43(1):23–33

    Article  Google Scholar 

  • Gao L, Du Q, Zhang B, Yang W, Wu Y (2013) A Comparative Study on Linear Regression-Based Noise Estimation for Hyperspectral Imagery. IEEE J Selected Topics Appl Earth Observations Remote Sensing 6:488–498

    Article  Google Scholar 

  • Heinz DC, Chang C (2001) Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans Geosci Remote Sens 39:529–545. doi:10.1109/36.911111

    Article  Google Scholar 

  • Iordache MD, Bioucas-Dias JM, Plaza A, Somers B (2014) MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression. Geoscience Remote Sensing, IEEE Trans 52(7):4364–4382

    Article  Google Scholar 

  • Jin B, Wang B, Zhang L (2010) A Novel Approach Based on Fisher Discriminant Null Space for Decomposition of Mixed Pixels in Hyperspectral Imagery. IEEE Geosci Remote Sens Lett 7:699–703. doi:10.1109/LGRS.2010.2046134

    Article  Google Scholar 

  • Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Process Mag 19:44–57. doi:10.1109/79.974727

    Article  Google Scholar 

  • Liu X, Xia W, Wang B, Zhang L (2011) An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. Geoscience Remote Sensing, IEEE Trans 49(2):757–772

    Article  Google Scholar 

  • Manolakis D, Siracusa C, Shaw G (2001) Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans Geosci Remote Sens 39:1392–1409. doi:10.1109/36.934072

    Article  Google Scholar 

  • Mei S, He M, Wang Z, Feng D (2010) Spatial Purity Based Endmember Extraction for Spectral Mixture Analysis. IEEE Trans Geosci Remote Sens 48(9):3434–3445

    Article  Google Scholar 

  • Miao L, Qi H, Szu H (2007) A maximum entropy approach to unsupervised mixed-pixel decomposition. Image Proc, IEEE Trans 16(4):1008–1021

    Article  Google Scholar 

  • Nascimento JMP, Bioucas-Dias JM (2005) Does independent component analysis play a role in unmixing hyperspectral data? IEEE Trans Geosci Remote Sens 43:175–187. doi:10.1109/TGRS.2004.839806

    Article  Google Scholar 

  • Pu H, Chen Z, Wang B, Xia W (2015) Constrained Least Squares Algorithms for Nonlinear Unmixing of Hyperspectral Imagery. IEEE Trans Geosci Remote Sens 53:1287–1303

    Article  Google Scholar 

  • Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO (1998) Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models. Remote Sens Environ 65:267–279

    Article  Google Scholar 

  • Somers B, Delalieux S, Stuckens J, Verstraeten WW, Coppin P (2009a) A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems. Int J Remote Sens 30:139–147

    Article  Google Scholar 

  • Somers B, Cools K, Delalieux S, Stuckens J, Van der Zande D, Verstraeten WW, Coppin P (2009b) Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards. Remote Sens Environ 113(6):1183–1193

    Article  Google Scholar 

  • Somers B, Asner GP, Tits L, Coppin P (2011) Endmember variability in spectral mixture analysis: a review. Remote Sens Environ 115:1603–1616

    Article  Google Scholar 

  • Somers B, Zortea M, Plaza A, Asner GP (2012) Automated Extraction of Image-Based Endmember Bundles for Improved Spectral Unmixing. IEEE J Selected Topics Appl Earth Observations Remote Sensing 5(2):396–408

    Article  Google Scholar 

  • Song CH (2005) Spectral mixture analysis for subpixel vegetation fractions in the urban environment: how to incorporate endmember variability? Remote Sens Environ 95:248–263

    Article  Google Scholar 

  • Sun W, Li W, Li J, Lai YM (2015) Band selection using sparse nonnegative matrix Factorization with the thresholded Earth’s mover distance for hyperspectral imagery classification. Earth Sci Informatics

  • Tits L, Keersmaecker W, Somers B, Asner GP, Farifteh J, Coppin P (2012) Hyperspectral shape-based unmixing to improve intra- and interclass variability for forest and agro-ecosystem monitoring. ISPRS J Photogram Rem Sens 74:163–174

    Article  Google Scholar 

  • Vaiphasa C, Skidmore AK, de Boer WF, Vaiphasa T (2007) A hyperspectral band selector for plant species discrimination. ISPRS J Photogram Rem Sens 62(3):225–235

    Article  Google Scholar 

  • Wedin P-Å (1973) Perturbation theory for pseudo-inverses. BIT 13:217–232

    Article  Google Scholar 

  • Zare A, Gader P (2010) PCE: piecewise convex endmember detection. IEEE Trans Geosci Remote Sens 48:2620–2632

    Article  Google Scholar 

  • Zare A, Ho KC (2014) Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing. IEEE Signal Process Mag 31:95–104. doi:10.1109/MSP.2013.2279177

    Article  Google Scholar 

  • Zare A, Gader P, Casella G (2013) Sampling Piecewise Convex Unmixing and Endmember Extraction. IEEE Trans Geosci Remote Sens 51(3):1655–1665

    Article  Google Scholar 

  • Zhang J, Rivard B, Sanchez-Azofeifa A (2004) Derivative spectral unmixing of hyperspectral data applied to mixtures of lichen and rock. IEEE Trans Geosci Remote Sens 42:1934–1940

    Article  Google Scholar 

  • Zhuang L, Zhang B, Gao L, Li J, Plaza A (2015) Normal Endmember Spectral Unmixing Method for Hyperspectral Imagery. IEEE J Select Top Appl Earth Obs Remote Sens (JSTARS) 8(6):2598–2606

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Ben Somers for generously providing the in situ measured data. They also acknowledge the anonymous reviewers for their outstanding comments and suggestions, which greatly helped to improve the technical content and presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Ebadzadeh.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A., Safabakhsh, R. & Ebadzadeh, M.M. Endmember orthonormal mapping in hyperspectral mixture analysis to address endmember variability. Earth Sci Inform 9, 291–307 (2016). https://doi.org/10.1007/s12145-016-0256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-016-0256-4

Keywords

Navigation