Skip to main content

Advertisement

Log in

Spatial autocorrelation of Neogene-Quaternary lava along the Snake River Plain, Idaho, USA

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The sequence of eruption, spatial pattern, and spatio-temporal relationships among the Neogene-Quaternary rhyolitic and basaltic lava along the Snake River Plain (SRP) in Idaho are analyzed applying the spatial methods of global and local Moran’s I, standard deviational ellipse, and Ripley’s K-function. The results of the analyses by the Moran’s I and K-function methods indicate a higher spatial autocorrelation, hence clustering, of rhyolitic lava compared to the more dispersed basaltic lava in each center of eruption along the SRP. The clustered nature of rhyolitic lava around each caldera either reflects the original spread and large thickness of the rhyolitic lava, or the absence of younger cover strata or lava like the distribution of rhyolite in the present caldera at the Yellowstone National Park. The standard deviational ellipses (SDEs) of the lavas indicate that younger basaltic lava that erupted from newer calderas overlapped older rhyolitic and basaltic lava as the position of the Yellowstone hotspot progressively migrated to the northeast along the SRP. The less eccentric SDEs of rhyolitic lava in each caldera probably reflect the original caldera-scale spread of viscous felsic lava, compared to the more eccentric and larger SDEs of basaltic lava which represent basalt’s wider and more directed spread due to its higher fluidity and ability to flow longer distances along the trend of the SRP. The alignment of the long axes of the lava SDEs with the trend of the Eastern SRP and the trend of systematic spatial overlap of older lava by successively younger basaltic lava corroborate the previously reported migration of the centers of eruption along the ESRP as the Yellowstone hotspot migrated to the northeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen DW (2009) GIS tutorial 2: spatial analysis workbook. Environmental Systems Research Institute Press, Redlands

    Google Scholar 

  • Alt DD, Hyndman DW (2009) Roadside geology of Montana, seventh edn. Mountain Press Publishing, Missoula

    Google Scholar 

  • Anselin L (1988) Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr Anal 20:1–17

    Article  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association - LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Anselin L (2003) Spatial externalities. Int Reg Sci Rev 26:147–152

    Article  Google Scholar 

  • Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22

    Article  Google Scholar 

  • Armstrong RL, Leeman WP, Malde HE (1975) K-Ar dating Quaternary and Neogene volcanic rocks of the Snake River Plain, Idaho. Am J Sci 275(3):225–251

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis, Harlow, UK, Longman Scientific & Technical. Wiley, New York, pp 247–255

    Google Scholar 

  • Baojun W, Bin S, Inyang HI (2008) GIS-based quantitative analysis of orientation anisotropy of contaminant barrier particles using standard deviational ellipse. Soil Sediment Contam 17(4):437–447

    Article  Google Scholar 

  • Barot S, Gignoux J, Menaut JC (1999) Demography of a savanna palm tree: Predictions from comprehensive spatial pattern analyses. Ecology 80:1987–2005

    Article  Google Scholar 

  • Beranek LP, Link PK, Fanning CM (2006) Miocene to Holocene landscape evolution of the western Snake River Plain region, Idaho: using the SHRIMP detrital zircon record to track eastward migration of the Yellowstone hotspot. Geol Soc Am Bull 118(1027):1050

    Google Scholar 

  • Bivand R (2015) Spatial dependence: weighting schemes, statistics and models

  • Boots BN, Getis A (1988) Point pattern analysis. scientific geography series, vol 8. Sage, Newbury Park

    Google Scholar 

  • Briggs AH, Ritchie K, Fenwick E, Chalkidou K, Littlejohns P (2010) Access with evidence development in the UK: past experiences, current initiatives and future potential. PharmacoEconomics 28:163–170

    Article  Google Scholar 

  • Champion DE, Hodges MK, Davis LC, Lanphere MA (2011) Paleomagnetic correlation of surface and subsurface basaltic lava flows and flow groups in the southern part of the Idaho National Laboratory. Idaho, with paleomagnetic data tables for drill cores: US Geological Survey Scientific Investigations Report, 5049. Improved Parameter Definitions, Kansas. Geol Survey Bull 223:473–488

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes. Pion, London, p 266

    Google Scholar 

  • Cressie NC (1991) Statistics for spatial data. Wiley, New York, p 900

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data, Revised edn. Wiley, New York, p 252

    Google Scholar 

  • Cressie N, Wikle CK (2015) Statistics for spatio-temporal data. Wiley, New Jersey

    Google Scholar 

  • Dai D, Chen YS, Chen PS, Chen YL (2012) Case cluster shifting and contaminant source as determinants of melioidosis in Taiwan. Tropical Med Int Health 17(8):1005–1013

    Article  Google Scholar 

  • Dai D, Taquechel E, Steward J, Strasser S (2010) The impact of built environment on pedestrian crashes and the identification of crash clusters on an urban university campus. West J Emerg Med 11(3):294

    Google Scholar 

  • Dai D, Zhang Y, Lynch CA, Miller T, Shakir M (2013) Childhood drowning in Georgia: A geographic information system analysis Original Research Article. Appl Geogr 37:11–22

    Article  Google Scholar 

  • De Frutos A, Olea PP, Vera R (2007) Analyzing and modelling spatial distribution of summering lesser kestrel: the role of spatial autocorrelation. Ecol Model 200(1):33–44

    Article  Google Scholar 

  • Diniz-Filho JAF, Barbosa ACOF, Collevatti RG, Chaves LJ, Terribile LC, Lima-Ribeiro MS, Telles MPC (2016) Spatial autocorrelation analysis and ecological niche modelling allows inference of range dynamics driving the population genetic structure of a Neotropical savanna tree. J Biogeogr 43:167–177. doi:10.1111/jbi.12622

    Article  Google Scholar 

  • Dubois DP (1983) Tectonic framework of basement thrust terrane, northern Tendoy Range, southwestern Montana, in Geologic studies in the Cordilleran thrust belt. Rocky Mt Assoc Geol 1:145–158

    Google Scholar 

  • Ebdon D (1985) Statistics in geography. Blackwell Publishers, Oxford, p 232

    Google Scholar 

  • ESRI (Environmental Systems Research, Inc.) (2012). ArcGIS Web-based Help. http://resources.arcgis.com/content/web and http://goto.arcgisonline.com/maps/NatGeo_World_Map

  • Estiri H (2012) Tracking urban sprawl: applying Moran’s I technique in developing sprawl detection models. Emergent Placemaking, pp 47–53

  • Fouch MJ (2012) The Yellowstone hotspot: plume or not? Geology 40(5):479–480

    Article  Google Scholar 

  • Fox E, Balram S, Dragicevic S, Roberts A (2012) Spatial analysis of high resolution aerial photographs to analyze the spread of Mountain pine beetle infestations. J Sustain Dev 5(9):106

  • Fox JC, Huiquan B, Ades PK (2007) Spatial dependence and individual-tree growth models II. Modelling spatial dependence. For Ecol Manag 245:20–30

    Article  Google Scholar 

  • Fritz WJ (1991) Theoretical wave modeling of large wave ripples in volcaniclastic sediments, Ordovician Llewelyn Volcanic Group, North Wales. Sediment Geol 74(1-4):241–250

    Article  Google Scholar 

  • Fritz WJ, Sears JW (1993) Tectonics of the Yellowstone hotspot wake in southwest Montana. Geology 21:427–430

    Article  Google Scholar 

  • Fritz WJ, Thomas RC (2011) Roadside geology of Yellowstone country (Roadside Geology Series), second edn. Mountain Press Publishing Company, Missoula, p 311

    Google Scholar 

  • Fu WJ, Jiang PK, Zhou GM, Zhao KL (2013) Using Moran's I and GIS to study spatial pattern of forest litter carbon density in typical subtropical region, China. Biogeosci Discuss 10:19245–19270

    Article  Google Scholar 

  • Gebhardt F (2001) Spatial cluster test based on triplets of districts. Comput Geosci 27(3):279–288

    Article  Google Scholar 

  • Getis A (2007) Reflections on spatial autocorrelation. Reg Sci Urban Econ 37(4):491–496

    Article  Google Scholar 

  • Getis A (2008) A history of the concept of spatial autocorrelation: a geographer's perspective. Geogr Anal 40(3):297–309

    Article  Google Scholar 

  • Goodchild MF (1986) Spatial autocorrelation. Catmog 47, Geo Books, Norwich, p 56

    Google Scholar 

  • Gould PR (1970) Is statistix inferens the geographical name for a wild goose? Econ Geogr 46:439–448

    Article  Google Scholar 

  • Griffith DA (1987) Spatial autocorrelation: a primer. Resource Publications in Geography. Association of American Geographers, Washington, DC

    Google Scholar 

  • Griffith D (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Griffith DA, Arbia G (2010) Detecting negative spatial autocorrelation in georeferenced random variables. Int J Geogr Inf Sci 24(3):417–437

    Article  Google Scholar 

  • Hamilton W, Myers WB (1966) Cenozoic tectonics of the western United States. Am Geophys Union Rev Geophys 4:509–549

    Google Scholar 

  • Hodges MKV, Link PK, Fanning MC (2002) The Pliocene Lost River found to west: detrital zircon evidence of drainage disruption along a subsiding hotspot track. J Volcanol Geotherm Res 188:237–249

    Article  Google Scholar 

  • Hughes SS, Smith RP, Hackett WR, Anderson SR (1999) Mafic volcanism and environmental geology of the eastern Snake River Plain, Idaho. Guidebook to the Geology of Eastern Idaho. Idaho Museum of Natural History, Idaho, pp 143–168

    Google Scholar 

  • Husen S, Smith BR (2004) Probabilistic earthquake relocation in three-dimensional velocity models for the Yellowstone National Park region, Wyoming. Bull Seismol Soc Am 94(30):880–896

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York, p 592

    Google Scholar 

  • Jacquez G (2014) Spatial clustering and autocorrelation in health events. In: Fisher, MM, Nijkamp P (eds) Handbook of Regional Science. Springer-Verlag Berlin Heidelberg, pp 1311–1334

  • Janecke SU (2007) Cenozoic extensional processes and tectonics in the northern Rocky Mountains: Southwest Montana and eastern Idaho. Northwest Geol 36:111–132

    Google Scholar 

  • Kang S, Spiller M, Jang K, Bigham JM, Seo J (2012) Spatiotemporal Analysis of Macroscopic Patterns of Urbanization and Traffic Safety. Transportation Research Record: Journal of the Transportation Research Board 2318(1):45–51

    Article  Google Scholar 

  • Karlstrom A, Ceccato V (2000) A new information theoretical measure of global and local spatial association. Papers of the European Regional Science Association. Royal Institute of Technology, Urban Studies, SE 10044, Stockholm

  • Kim TJ, Bullock BP, Stape JL (2015) Effects of silvicultural treatments on temporal variations of spatial autocorrelation in eucalyptus plantations in Brazil. For Ecol Manag 358:90–97

    Article  Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14(1):22–26

    Article  Google Scholar 

  • Krivoruchko (2011) Partial statistical data analysis for GIS users. Esri Press, Redlands

    Google Scholar 

  • Kumar MRP, Ranjith KS, Kumar BK, Yadav GM (2012) Analysis of spatial data mining and global autocorrelation. Int J Comput Sci Inform Sec (IJCSIS) 2:519–523

    Google Scholar 

  • Langlois H (2013) Asset pricing with return asymmetries: theory and tests. Available at SSRN 2362944

  • Lauren M, Scott M, Janikas V (2010). Spatial statistics in ArcGIS. In: Handbook of applied spatial analysis. pp 27–41

  • Lee J, Wong DWS (2000) Statistical analysis with ArcView GIS. Wiley, New York, p 189

    Google Scholar 

  • Leeman WP (2013) Magic reservoir eruptive center, in Snake River Plain-Yellowstone Volcanic Province: Jackson, Wyoming to Boise, Idaho July 21-29, 1989. In: Ruebelmann KL, Smith RP, Downs WF, Christiansen RL, Hacket WR, Morgan LM, Leeman WP, Wood SH, Malde HE, Kuntz MA (eds) American Geophysical Union, Washington, DC

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. 2nd English edition. Elsevier, Amsterdam, p 853

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. 3rd English edition, vol 24. Elsevier. Amsterdam. p 1006

  • Lin G, Zhang T (2007) Loglinear residual tests of Moran's I autocorrelation and their applications to Kentucky breast cancer data. Geogr Anal 39(3):293–310

    Article  Google Scholar 

  • Link PK, Fanning CM, Beranek LP (2005) Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: an example of reproducing the bumpy barcode. Sediment Geol 182:101–142

  • Link PK, Phoenix EC (1996) Rocks, rail, & trails. Idaho Museum of Natural History, 2nd edn. Pocatello, ID, p 193

  • Liu JG, Mason P (2013) Essential Image Processing and GIS for Remote Sensing. Wiley-Blackwell, West Sussex, p 464

  • Lloyd CD (2010) Exploring population spatial concentrations in Northern Ireland by community background and other characteristics: an application of geographically weighted spatial statistics. Int J Geogr Inf Sci 24:1193–1221

    Article  Google Scholar 

  • Lloyd CD (2012) Analyzing the spatial scale of population concentrations by religion in Northern Ireland using global and local variograms. Int J Geogr Inf Sci 26(1):57–73

    Article  Google Scholar 

  • Ma Q, Tipping RH, Lavrentieva NN (2012) Causal correlation functions and Fourier transforms: Application in calculating pressure induced shifts. J Quant Spectrosc Radiat Transf 113:936–950

    Article  Google Scholar 

  • MBMG (Montana Bureau of Mines and Geology). http://www.mbmg.mtech.edu/gis/gis-datalinks.asp

  • McKillup S, Dyar MD (2010) Geostatistics explained: an introductory guide for earth scientists. Cambridge University Press, Cambridge, UK, p 396

  • McQuarrie N, Rodgers D (1998) Subsidence of a volcanic basin by flexure and lower crustal flow: the eastern Snake River Plain, Idaho. Tectonics 17(2):203--220. (ISSN: 0278-7407)

  • Millward D (2003) The Lower Palaeozoic igneous rocks and Quaternary deposits of the area between Haweswater and Shap (part of Sheets 30 and 39, England and Wales). British Geological Survey Research Report, RR/02/02. p 48

  • Mitchell A (2005) The ESRI guide to GIS analysis, vol 2. Environmental Systems Research Institute Press. Redlands

  • Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc Ser B 10:243–251

    Google Scholar 

  • Morgan WJ (1972) Deep mantle convection plumes and plate motions. Am Assoc Pet Geol Bull 56(2):203–213

    Google Scholar 

  • Morgan LA, Pierce KL, McIntosh WC (1998) The volcanic track of the Yellowstone hotspot—an update: Yellowstone. Science 5:44

    Google Scholar 

  • Morgan LA, Shanks P, Lovalvo D, Pierce K, Lee G, Webring M, Harlan S (2003) The floor of Yellowstone Lake is anything but quiet. Yellowstone Sci 11:15–30

    Google Scholar 

  • Morgan LA, Shanks WC, Pierce KL, Rye RO (1998) Hydrothermal Explosion Deposits in Yellowstone National Park: Links to Hydrothermal Processes. Eos, Transactions, AGU 79 Fall Annual Meeting, F964

  • Morrison AC, Gray K, Getis A, Astete H, Sihuincha M, Focks D, Watts D, Stancil J, Olson J, Blair P, Scott TW (2004) Temporal and geographic patterns of Aedes aegypti (Diptera: Culididae) production in Iquitos, Peru. J Med Entomol 41:1123–1142

    Article  Google Scholar 

  • Myers WB, Hamilton WB (1964) Deformation accompanying the Hebgen Lake earthquake of August 17, 1959. U.S. Geol Surv 435:55–98

    Google Scholar 

  • Nakhapakorn K, Jirakajohnkool S (2006) Temporal and spatial autocorrelation statistics of dengue Fever. Dengue Bull 30:177

    Google Scholar 

  • Ord JK, Getis A (2001) Testing for local spatial autocorrelation in the presence of global autocorrelation. J Reg Sci 41(3):411–432

    Article  Google Scholar 

  • Overmars KP, de Koning GHJ, Veldkamp A (2003) Spatial autocorrelation in multi-scale land use models. Ecol Model 164:257–270

    Article  Google Scholar 

  • Paradis E (2013) Moran ’s autocorrelation coefficient in comparative methods. Available online. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.8595&rep=rep1&type=pdf Accessed August 2017

  • Pardee JT (1950) Late Cenozoic block faulting in western Montana. Geol Soc Am Bull 61:359–406

    Article  Google Scholar 

  • Payne SJ, McCaffrey R, King RW, Kattenhorn SA (2012) A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements. Batelle Energy alliance, LLC. Geophys J Int 189:101–122

    Article  Google Scholar 

  • Pélissier R, Goreaud F (2015) Ads package for R: a fast unbiased implementation of the k-function family for studying spatial point patterns in irregular-shaped sampling windows. J Stat Softw 63(6):1–18

    Article  Google Scholar 

  • Pierce KL Morgan LA (1992) The track of the Yellowstone hot spot: Volcanism, faulting, and uplift. In: Link PK, Kuntz MA, Platt LB (eds) Regional geology of Eastern Idaho and Western Wyoming. Geological Society of America Memoir, vol 179, pp 1–53

  • Pierce KL, Morgan LA (2009) Is the track of the Yellowstone hotspot driven by a deep mantle plume? - A review of volcanism, faulting, and uplift in light of new data. J Volcanol Geotherm Res 188:1–25

    Article  Google Scholar 

  • Pierre JP, Abolt CJ, Young MH (2015) Impacts from above-ground activities in the Eagle Ford Shale play on landscapes and hydrologic flows, La Salle County, Texas. Environ Manag 55(6):1262–1275

    Article  Google Scholar 

  • Ping JL, Green CJ, Zartman RE, Bronson KF (2004) Exploring spatial dependence of cotton yield using global and local autocorrelation statistics. Field Crop Res 89(2):219–236

    Article  Google Scholar 

  • Premo LS (2004) Local spatial autocorrelation statistics quantify multi-scale patterns in distributional data: an example from the Maya Lowlands. J Archaeol Sci 31(7):855–866

    Article  Google Scholar 

  • Reynolds MW, Miggins DP, Snee LW (2002) Age and tectonics of middle Tertiary basaltic volcanism and effects on the landscape of west-central Montana. Geol Soc Am Abstr Programs 34:409

    Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B Methodol:72–212

  • Rodgers DW, Ore HT, Bobo RT, McQuarrie N, Zentner N (2002) Extension and subsidence of the eastern Snake River Plain, Idaho. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geol Surv Bull 30:121–155

  • Sanford RF (2005) Geology and stratigraphy of the Challis Volcanic Group and related rocks, Little Wood River area, south-central Idaho, with a section on Geochronology by Lawrence W. Snee: U.S. Geol Surv Bull 2064-II, p 22

  • Savov IP, Leeman WP, Lee CTA, Shirey SB (2009) Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon. J Volcanol Geotherm Res 188(1):162–172

    Article  Google Scholar 

  • Scott LM, Janikas MV (2010) Spatial statistics in ArcGIS. In Fischer M, Getis A (eds) Handbook of Applied Spatial Analysis, Springer, Berlin, Heidelberg and New York, pp 27–41

  • Sears JW, Hendrix MS, Thomas RC, Fritz WJ (2009) Stratigraphic record of the Yellowstone hotspot track, Neogene Sixmile Creek Formation grabens, southwest Montana. In: Morgan LA, Cathey HE, Pierce KL (eds) Track of the Yellowstone Hotspot. J Volcanol Geotherm Res 188:250–259

  • Shen Q (1994) An application of GIS to the measurement of spatial autocorrelation. Comput Environ Urban Syst 18(3):167–191

    Article  Google Scholar 

  • Shervais JW (2006) Significance of subduction-related accretionary complexes in early earth processes. In: Reimold U, Gibson R (eds) Early earth processes, Geological Society of America, Special Paper vol 405, pp 173–192

  • Shervais JW, Hanan BB (2008) Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot. Tectonics 27 https://doi.org/10.1029/2007TC002181

  • Shervais JW, Vetter SK (2009) High-K Alkali Basalts of the Western Snake River Plain: Abrupt Transition from Tholeiitic to Mildly Alkaline Plume-Derived Basalts, Western Snake River Plain, Idaho. J Volcanol Geotherm Res 188(1):141–152

    Article  Google Scholar 

  • Smedes H, Prostka HJ (1972) Stratigraphic framework of the Absaroka Volcanic Supergroup in the Yellowstone National Park Region. USGS Prof Pap 729-C, p 33

  • Smith RB (2000) Windows into Yellowstone: an interview with geologist and geophysicist. Yellowstone Sci 8:1–13

    Google Scholar 

  • Smith RB, Braile LW (1993) Topographic signature, space-time evolution, and physical properties of the Yellowstone-Snake River Plain volcanic system: the Yellowstone hotspot. In: Snake AW, Steidtmann J, Roberts SM (eds) Geol. Survey of Wyoming, Memoir No. 5, pp 694–754

  • Smith RB, Jordan M, Steinberger B, Puskas CM, Farrell J, Waite GP, Husen S, Chang WL, O'Connell RO (2009) Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow. In: Morgan LA, Cathey HE, Pierce KL (eds) Track of the Yellowstone Hotspot. J Volcanol Geotherm Res 188:26–56

  • Smith RB, Sbar M (1974) Contemporary tectonics and seismicity of the Western United States with emphasis on the Intermountain Seismic Belt. Bull Geol Soc Am 85:1205–1218

    Article  Google Scholar 

  • St. Jean ZC, Teeter DR (2004) Geologic map of the Ruby Dam area, southwest Montana, Montana Bureau of Mines and Geology: Open-File Report 488, 12 p., 2 sheet(s), 1:48,000

  • Streib K, Davis JW (2011) Using ripley's K-function to improve graph-based clustering techniques. IEEE Conference on Computer Vision and Pattern Recognition 2011, IEEE, Colorado Springs, pp 2305–2312

  • Suppe J, Powell C, Berry R (1975) Regional topography, seismicity, Quaternary volcanism, and the present-day tectonics of the western United States. Am J Sci 275-A:397–436

    Google Scholar 

  • Thompson CJ, Croke J, Ogden R, Wallbrink P (2006) A morpho-statistical classification of mountain stream reach types in southeastern Australia. Geomorphology 81(1):43–65

    Article  Google Scholar 

  • Tiefelsdorf M (1997) A note on the extremities of local Moran’s Ii s and their impact on global Moran’s I. Geograph Anal 29:249–257

    Google Scholar 

  • Tiefelsdorf M (2002) The saddlepoint approximation of Moran’s I’s and local Moran’s Ii’s reference distribution and their numerical evaluation. Geograph Anal. 34:187–206

    Google Scholar 

  • Tobler W (1979) Cellular geography. In: Gale S, Olsson G (eds) Philosophy in geography. Reidel, Dordrecht, pp 379–386

    Chapter  Google Scholar 

  • USGS (U.S. Geological Survey). http://mrdata.usgs.gov/geology/state/state.php?state=ID and http://mrdata.usgs.gov/geology/state/state.php?state=WY

  • Waldhor T (1996) The spatial autocorrelation coefficient Moran’s I under heteroscedasticity. Statist Med 15:887–892

    Article  Google Scholar 

  • Walker M, Winskill P, Basáñez MG, Mwangangi JM, Mbogo C, Beier J, Midega J (2013) Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast. Parasit Vectors 6:311

    Article  Google Scholar 

  • Watts KE, Bindeman IN, Schmitt AK (2011) Large-volume Rhyolite Genesis in Caldera Complexes of the Snake River Plain: Insights from the Kilgore Tuff of the Heise Volcanic Field, Idaho, with Comparison to Yellowstone and Bruneau-Jarbidge Rhyolites. J Petrol 52:857–890. https://doi.org/10.1093/petrology/egr005

  • Wegmann KW, Zurek BD, Regalla CA, Bilardello D, Wollenberg JL, Kopczynski SE et al (2007) Position of the Snake River watershed divide as an indicator of geodynamic processes in the greater Yellowstone region, western North America. Geosphere 3(4):272–281

    Article  Google Scholar 

  • Wolf-Branigin M (2002) Applying spatial randomness to community inclusion. J Mod Appl Stat Methods 1(1):110–113

    Article  Google Scholar 

  • Wong DWS, Lee J (2005) Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, Hoboken. Geogr Inform Sci 11:1–3

  • Xiong J (2008) An introduction to stochastic filtering theory. Oxford University Press, Oxford

    Google Scholar 

  • Xue M, Allen RM (2006) Origin of the Newberry hotspot track: evidence from shear wave spitting. Earth Planet Sci Lett 244:315–322

    Article  Google Scholar 

  • Yamada I, Rogerson P (2003) An empirical comparison of edge effect correction methods applied to K-function analysis. Geogr Anal 35:97–109

    Google Scholar 

  • Yuan H, Dueker K (2005) Teleseismic P-wave tomogram of the Yellowstone plume. Geophys Res Lett 32:7304

    Article  Google Scholar 

  • Yuan H, Dueker K, Stachnik J (2010) Crustal structure and thickness along the Yellowstone hotspot track: evidence 33 for lower crustal outflow from beneath the eastern Snake River Plain. Geochem Geophys 11:34

    Google Scholar 

  • Zhang T, Lin G (2006) A supplemental indicator of high-value or low-value spatial clustering. Geogr Anal 38:209–225

    Article  Google Scholar 

  • Zhang Y, Lin G (2007) A decomposition of Moran's I for clustering detection. Comput Stat Data Anal 51(12):6123–6137

    Article  Google Scholar 

  • Zhang CS, Selinus O (1997) Spatial analyses for copper, lead and zinc contents in sediments of the Yangtze River basin. Sci Total Environ 204:251–262

    Article  Google Scholar 

  • Zhang C et al (2008) Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci Total Environ 398(1–3):212

    Article  Google Scholar 

Download references

Acknowledgements

We thank the three anonymous reviewers who contributed to the improvement of the manuscript through their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Davarpanah.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davarpanah, A., Babaie, H.A. & Dai, D. Spatial autocorrelation of Neogene-Quaternary lava along the Snake River Plain, Idaho, USA. Earth Sci Inform 11, 59–75 (2018). https://doi.org/10.1007/s12145-017-0315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-017-0315-5

Keywords

Navigation