Skip to main content

Advertisement

Log in

A comparative study on using metaheuristics for the seismic-ray-tracing problem

  • Methodology Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

In this paper we deal the multi-layer case in the seismic-ray-tracing problem. Each ray is defined by its departure angle, and it spreads according to Snell’s Law; on the other hand, the medium of propagation is characterized by its density, the number of seismic layers, and the deep of these reflectors. Consider the above in the building the models, it allows that the travel time of a ray depends only on one variable but generates an excessive number of degrees of freedom in the system, which restricts the search space and makes it difficult to obtain an optimal solution. The foregoing motivates to solve the problem through a metaheuristic. We propose a solving methodology based on the shooting method immersed in the ray tracing methodology to find a solution to the initial value problem by using some metaheuristics, namely, Spiral Dynamics Inspired Optimization, Gravitational Search Algorithm and Genetic Algorithm. To our knowledge, this methodology has not been reported to solve such problem. There are not analytical solutions for models with two or more layers. A comparative study about the performance of the metaheuristics implemented is presented. The simulation results shows the competitiveness of the proposed algorithms, but in terms of solution quality and consumed time the Spiral Dynamics Inspired Optimization is better, followed by the Genetic Algorithm. Furthermore, the one-layer model was solved with the proposed algorithms and the results agree with the analytical solution reported in literature. In turn, our methodology provides better solutions than the Dix’s equation and a metaheuristic-bending method for all the simulations we present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is important to mention that no binary code is used for GSA and SO metaheuristics. It is only implemented by GA.

  2. Values measured at intersections between the path and the layers.

References

  • Aki K, Richards PG (2002) Quantitative Seismology, 2nd edn. University Science Books, California

  • Balkaya Č (2013) An implementation of differential evolution algorithm for inversion of geoelectrical data. J Appl Geophys 98:160-175

  • Benamou J-D (1996) Big Ray Tracing: Multivalued Travel Time Field Computation Using Viscosity Solutions of the Eikonal Equation. J Comput Phys 128:463-474

  • Benaslaa L, Belmadanib A, Rahlia M (2014) Spiral Optimization Algorithm for solving Combined Economic and Emission Dispatch. Int Electr Power Energy Syst 62:163-174

  • Bergey PK, Ragsdale CT, Kote MH (2003) A Simulated Annealing Genetic Algorithm for the Electrical Power Districting Problem. Ann Oper Res 121:33–55

  • Burger HR, Burger DC (1992) Exploration Geophysics of the Shallow Subsurface. Prentice Hall, N.J

  • Červený V (2001) Seismic Ray Theory. Cambridge University Press, USA

  • Constain JK, Coruh C (2004) Basic Theory of Exploration Seismology. Elsevier, USA

  • Conti CR, Roisenberg M, Schwedersky NG, Porsani MJ (2013) Fast Seismic Inversion Methods Using Ant Colony Optimization Algorithm. IEEE Geosci Remote Sens Letters 10:1119–1123. https://doi.org/10.1109/LGRS.2012.2231397,

  • Contreras OA, Pacheco JR, Larrazábal G (2008) Trazado de rayos sísmicos usando un algoritmo genético. Ingeniería UC 15(1):50–58

  • Chopra S, Castagna JP (2014) AVO. Society of Exploration Geophysicists, USA

  • Dávila-Torres RF (2012) Trazado de rayos sísmicos mediante la optimización de la ecuación de tiempos de arribo utilizando Programación Evolutiva. Degree Thesis, Universidad Autónoma de Nuevo León

  • Dias AHF, de-Vasconcelos JA (2002) Multiobjective genetic algorithms applied to solve optimization problems. Trans Magn 38:2

  • Eldos T, Al-Qasim R (2013) On The Performance of the Gravitational Search Algorithm. Int J Adva Comput Sci Appl 4(8):74-78

  • Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston

  • Grenchka V, Tsvankin I, Cohen JK (1999) Generalized Dix equation and analytic treatment of normal-moveout velocity for anisotropic media. Geophys Prospect 47:117–148

  • Hosseinabadi AR, Yazdanpanah M, Rostami AS (2012) A New Search Algorithm for Solving Symmetric Traveling Salesman Problem Based on Gravity. World Appl Sci J 16(10):1387–1392

  • Hosseinabadi AR, Siar H, Shamshirband S, Shojafar M, Nasir M (2014) Using the gravitational emulation local search algorithm to solve the multi-objective flexible dynamic job shop scheduling problem in Small and Medium Enterprises. Annals of Operations Research. https://doi.org/10.1007/s10479-014-1770-8

  • Ikelle LT, Amundsen L (2005) Introduction to Petroleum Seismology. Society of Exploration Geophysicists, USA

  • Janiaka A, Portmann MC (1998) Genetic algorithm for the permutation flow-shop scheduling problem with linear models of operations. Ann Oper Res 83:95–114

  • Kalos MH, Whitlock PA (2008) Monte Carlo Methods. WILEY-VCH, Germany

  • Kania A, Sidarto KA (2016) Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm. AIP Conf Proc 1716:020004. https://doi.org/10.1063/1.4942987

  • King SD (1995) Radial models of mantle viscosity: results from a genetic algorithm. Geophys J Int 122:725–734

  • Koziel S, Yang X (2011) Computational Optimization, Methods and Algorithms. Stud Comput Intell:356

  • Kumar M, Sharma MD (2013) Reflection and transmission of attenuated waves at the boundar between two dissimilar poroelastic solids satured with two immiscible viscous fluids. Geophys Prospect 61:1035–s1055

  • Marroquín Navarro LM (2012) Inversión sísmica de reflexión 2D, mediante la técnica de optimización Programación Evolutiva. Degree Thesis, Universidad Autónoma de Nuevo León

  • Nasir ANK, Tokhi MO (2015) An improved spiral dynamic optimization algorithm with engineering application. IEEE Transactions on Systems, Man, and Cybernetics: Systems. http://www.ieee.org/publications_standards/publications/rights/index.html. Accessed 30 September 2019

  • Nezamabadi-Pour H, Rashedi E, Saryazdi S (2009) GSA: A Gravitational Search Algorithm. Inf Sci 179:2232–2248

  • Nowers O, Duxbury DJ, Zhang J, Drinkwater BW (2014) Novel ray-tracing algorithms in NDE: Application of Dijkstra and A* algorithms to the inspection of an anisotropic weld. NDT&E Int 61:58–66

  • Ooi CH, Tan P (2003) Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 19:37–44

  • Osman IH, Laporte G (1996) Metaheuristics: A bibliography. Ann Oper Res 63:513–623

  • Poormirzaee R, Moghadam RH, Zarean A (2015) Inversion seismic refraction data using particle swarm optimization: a case study of Tabriz, Iran. Arabian J Geosci 8:5981–5989. https://doi.org/10.1007/s12517-014-1662-x

  • Poormirzaee R, Sarmady S, Sharghi Y (2019) A new inversion method using a modified bat algorithm for analysis of seismic refraction data in dam site investigation. Journal of Environmental and Engineering Geophysics. https://doi.org/10.2113/JEEG24.2.201

  • Prothero WA, Taylor WJ, Eickemeyer JA (1988) A fast two-point, three-dimensional ray tracing algorithm using a simple step search method. Bullet Seismol Soc Amer 78:1190–1198

  • Ramillien G (2001) Genetic algorithms for geophysical parameter inversion from altimeter data. Geophys J Int 147:393-402

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24:117–122

  • Rawlinson N, Hauser J, Sambridge M (2008) Seismic ray tracing and wavefront tracking in laterally heterogeneous media. Adv Geophys 49:203–273. https://doi.org/10.1016/S0065-2687(07)49003-3

  • Siddique N, Adeli H (2014) Spiral dynamics algorithm. International Journal on Artificial Intelligence Tools. https://doi.org/10.1142/S0218213014300014

  • Song X, Li L, Zhang X, Huang J, Shi X, Jin S, Bai Y (2014) Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves. J Appl Geophys 109:47–61

  • Stein S, Wysession M (2003) An introductionto seismology, earthquakes, and earth structure. Blackwell, Oxford

  • Tamura K, Yasuda K (2011) Spiral Dynamics Inspired Optimization. J Adv Comput Intell Intell Inf 15(8):1116–1122

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied Geophysics. Cambridge University Press, New York

  • Tsai C, Huang B, Chiang M (2014) A Novel Spiral Optimization for Clustering. Lect Notes Electr Eng 274:621-628

  • Vargas Contreras GA (2017) Estimación de parámetros para sísmica multicapa mediante aproximaciones a las ecuaciones de Zoeppritz utilizando algoritmos evolutivos. Master Thesis, Universidad Autónoma de Nuevo León

  • Xu B, Zhang Y (2014) An Improved Gravitational Search Algorithm for Dynamic Neural Network Identification. Int J Autom Comput 11(4):434-440

  • Yilmaz Ö (2008) Seismic Data Analysis: processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists, USA

  • Zhao A, Zhang Z, Teng J (2004) Minimum travel time tree algorithm for seismic ray tracing: improvement in efficiency. Journal of Geophysics and Engineering 1:245-251

Download references

Acknowledgements

We thank to CONACyT and UANL by the financially supporting. This study was partially funded by the PAICyT-UANL program (grant number CE855-19).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Roberto Soto-Villalobos, F-Javier Almaguer; Mathematical model: Roberto Soto-Villalobos, Mario A. Aguirre-López; Methodology: Roberto Soto-Villalobos, Mario A. Aguirre-López, Martha-Selene Casas-Ramírez; Formal analysis and investigation: Roberto Soto-Villalobos, F-Javier Almaguer, Mario A. Aguirre-López; Writing - original draft preparation: Mario A. Aguirre-López; Writing - review and editing: Mario A. Aguirre-López, Martha-Selene Casas-Ramírez, F-Javier Almaguer, Roberto Soto-Villalobos; Funding acquisition: F-Javier Almaguer; Computational experimentation: Mario A. Aguirre-López; Supervision: F-Javier Almaguer.

Corresponding author

Correspondence to Mario A. Aguirre-López.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-López, M.A., Soto-Villalobos, R., Casas-Ramírez, MS. et al. A comparative study on using metaheuristics for the seismic-ray-tracing problem. Earth Sci Inform 14, 469–483 (2021). https://doi.org/10.1007/s12145-020-00549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-020-00549-3

Keywords

Navigation