Abstract
Hyperspectral imaging has been rapidly developing over the past decade, and modern sensor technologies can cover large areas with exceptional spatial, spectral, and temporal resolutions. Due to these features, hyperspectral imaging is used effectively in numerous remote sensing applications such as precision agriculture, environmental monitoring, food analysis, and military applications requiring estimation of physical parameters of many complex surfaces and identifying visually similar materials with acceptable spectral signatures. The scope of fusion of the two images, one with high spatial content and the other with high spectral content, is to estimate one image with high spatial and spectral content. This paper presents a brief review of recent image resolution fusion algorithms, including deep learning techniques, for hyperspectral images. The need of high resolution panchromatic (pan) and multispectral (MS) images, lossless registration of images from multiple sources and point spread function (PSF) impose limitations for performing pan sharpening process. Hence the fusion is achieved using multispectral images instead of panchromatic images on hyperspectral images. It is essential to identify and reduce uncertainties in the image processing chain to improve image fusion enhancement. This paper also presents the current practices, problems, and prospects of hyperspectral image fusion. In addition, some important issues affecting fusion performance are discussed.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Not applicable
References
Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6:14410–14430. https://doi.org/10.1109/ACCESS.2018.2807385
Amigo JM and Santos C (2020) ‘Preprocessing of hyperspectral and multispectral images’, in Data Handling in Science and Technology. doi: https://doi.org/10.1016/B978-0-444-63977-6.00003-1
Asokan A, Popescu DE, Anitha J, Hemanth DJ (2020a) Bat algorithm based non-linear contrast stretching for satellite image enhancement. Geosciences (Switzerland) 10(2):1–12. https://doi.org/10.3390/geosciences10020078
Asokan A, Anitha J, Ciobanu M, Gabor A, Naaji A, Hemanth DJ (2020b) Image processing techniques for analysis of satellite images for historical maps classification-An overview. Applied Sciences (Switzerland) 10(12). https://doi.org/10.3390/app10124207
Asokan A et al. (2021) ‘Deep feature extraction and feature fusion for bi-temporal satellite image classification’, Computers, Materials and Continua, 66(1), pp. 373–388. Doi: https://doi.org/10.32604/cmc.2020.012364
Asokan A, Anitha J (2019) Change detection techniques for remote sensing applications: a survey. Earth Sci Inf 12:143–160. https://doi.org/10.1007/s12145-019-00380-5
Azarang A and Ghassemian H (2017) ‘A new pansharpening method using multi resolution analysis framework and deep neural networks’, in 3rd International Conference on Pattern Analysis and Image Analysis, IPRIA 2017. doi: https://doi.org/10.1109/PRIA.2017.7983017
Bendoumi MA et al. (2012) ‘Unmixing approach for hyperspectral data resolution enhancement using high resolution multispectral image’, in 2012 12th International Conference on Control, Automation, Robotics and Vision, ICARCV 2012. doi: https://doi.org/10.1109/ICARCV.2012.6485345
Bendoumi MA, He M, Mei S (2014) Hyperspectral image resolution enhancement using high-resolution multispectral image based on spectral unmixing. IEEE Trans Geosci Remote Sens 52:6574–6583. https://doi.org/10.1109/TGRS.2014.2298056
Blasch E, Zheng Y and Liu Z (2018) Multispectral Image Fusion and Colorization, Multispectral image fusion and colorization. doi: https://doi.org/10.1117/3.2316455
Borsoi RA, Imbiriba T, Bermudez JCM (2020) Super-resolution for Hyperspectral and multispectral image fusion accounting for seasonal spectral variability. IEEE Trans Image Process 29:116–127. https://doi.org/10.1109/TIP.2019.2928895
Brunet D, Vrscay ER, Wang Z (2012) On the mathematical properties of the structural similarity index. IEEE Trans Image Process 21:1488–1499. https://doi.org/10.1109/TIP.2011.2173206
Chakravortty S, Subramaniam P (2014) ‘Fusion of hyperspectral and multispectral image data for enhancement of spectral and spatial resolution’, in International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences - ISPRS Archives XL-8:1099–1103. https://doi.org/10.5194/isprsarchives-XL-8-1099-2014
Chen Q, Shi Z, An Z (2014a) Hyperspectral image fusion based on sparse constraint NMF. Optik 125(2):832–838. https://doi.org/10.1016/j.ijleo.2013.07.061
Chen Z, Pu H, Wang B, Jiang GM (2014b) Fusion of hyperspectral and multispectral images: a novel framework based on generalization of pan-sharpening methods. IEEE Geosci Remote Sens Lett 11:1418–1422. https://doi.org/10.1109/LGRS.2013.2294476
Cheng G, Han J (2016) A survey on object detection in optical remote sensing images. ISPRS J Photogramm Remote Sens 117:11–28. https://doi.org/10.1016/j.isprsjprs.2016.03.014
Dian R, Li S, Fang L, Wei Q (2019) Multispectral and hyperspectral image fusion with spatial-spectral sparse representation. Information Fusion. 49:262–270. https://doi.org/10.1016/j.inffus.2018.11.012
Ding Z et al. (2017) ‘A Pan-sharpening method for multispectral image with back propagation neural network and its parallel optimization based on spark’, in Proceedings of 2017 International Conference on Progress in Informatics and Computing, PIC 2017. doi: https://doi.org/10.1109/PIC.2017.8359525
Ducournau A and Fablet R (2017) ‘Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data’, in 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016. doi: https://doi.org/10.1109/PRRS.2016.7867019
Eghbalian S, Ghassemian H (2018) Multi spectral image fusion by deep convolutional neural network and new spectral loss function. Int J Remote Sens 39:3983–4002. https://doi.org/10.1080/01431161.2018.1452074
Eghbalian S and Ghassemian H (2019) ‘Multi spectral image fusion with deep convolutional network’, in 9th International Symposium on Telecommunication: With Emphasis on Information and Communication Technology, IST 2018. doi: https://doi.org/10.1109/ISTEL.2018.8661137
Feng CH et al (2018) Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: current state-of-the-art research advances. Food Control. https://doi.org/10.1016/j.foodcont.2017.07.013
Ferraris V, Dobigeon N, Wei Q, Chabert M (2018) Detecting changes between optical images of different spatial and spectral resolutions: a fusion-based approach. IEEE Trans Geosci Remote Sens 56:1566–1578. https://doi.org/10.1109/TGRS.2017.2765348
Palsson F, Johannes R, Sveinsson MOU. and JA. (2014) ‘Model Based PCA / WAVELET Fusion Of Multispectral And Hyperspectral Images’, in IEEE Geoscience and Remote Sensing Symposium, pp. 1532–1535
Ghassemian H (2016) A review of remote sensing image fusion methods. Information Fusion. 32:75–89. https://doi.org/10.1016/j.inffus.2016.03.003
Gomez RB, Jazaeri A and Kafatos M (2001) ‘Wavelet-based hyperspectral and multispectral image fusion’, in Geo-Spatial Image and Data Exploitation II, pp. 36–42. https://doi.org/10.1117/12.428249
Grohnfeldt C, Zhu XX and Bamler R (2013) ‘Jointly sparse fusion of hyperspectral and multispectral imagery’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2013.6723732
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013
Guerra R, Lopez S, Sarmiento R (2016) A computationally efficient algorithm for fusing multispectral and Hyperspectral images. IEEE Trans Geosci Remote Sens 54:5712–5728. https://doi.org/10.1109/TGRS.2016.2570433
Han X, Yu J, Luo J, Sun W (2019) Hyperspectral and multispectral image fusion using cluster-based multi-branch BP neural networks. Remote Sens 11. https://doi.org/10.3390/rs11101173
Han X, Yu J, Xue JH, Sun W (2020) Hyperspectral and multispectral image fusion using optimized twin dictionaries. IEEE Trans Image Process 29:4709–4720. https://doi.org/10.1109/TIP.2020.2968773
Han XH and Chen YW (2019) ‘Deep residual network of spectral and spatial fusion for hyperspectral image super-resolution’, in Proceedings - 2019 IEEE 5th International Conference on Multimedia Big Data, BigMM 2019. doi: https://doi.org/10.1109/BigMM.2019.00-13
He G, Xing S, Xia Z, Huang Q, Fan J (2018) Panchromatic and multi-spectral image fusion for new satellites based on multi-channel deep model’, in Machine Vision and Applications. 29:933–946. https://doi.org/10.1007/s00138-018-0964-5
Huang B et al (2014a) Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans Geosci Remote Sens 52:1693–1704. https://doi.org/10.1109/TGRS.2013.2253612
Huang PS et al. (2014b) ‘Deep learning for monaural speech separation’, in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. doi: https://doi.org/10.1109/ICASSP.2014.6853860
Jagalingam P, Hegde AV (2015) A review of quality metrics for fused image. Aquatic Procedia 4:133–142. https://doi.org/10.1016/j.aqpro.2015.02.019
Kakooei M, Baleghi Y (2020) A two-level fusion for building irregularity detection in post-disaster VHR oblique images. Earth Sci Inf 13:459–477. https://doi.org/10.1007/s12145-020-00449-6
Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90. https://doi.org/10.1016/j.compag.2018.02.016
Kanatsoulis CI et al (2018) ‘Hyperspectral super-resolution via coupled tensor factorization: Identifiability and algorithms’, in ICASSP. IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. https://doi.org/10.1109/ICASSP.2018.8462525
Kim Y, Choi J, Han D, Kim Y (2015) Block-based fusion algorithm with simulated band generation for Hyperspectral and multispectral images of partially different wavelength ranges. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8:2997–3007. https://doi.org/10.1109/JSTARS.2015.2433673
Kussul N, Lavreniuk M, Skakun S, Shelestov A (2017) Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci Remote Sens Lett 14:778–782. https://doi.org/10.1109/LGRS.2017.2681128
Li S, Kang X, Fang L, Hu J, Yin H (2017) Pixel-level image fusion: a survey of the state of the art. Information Fusion. 33:100–112. https://doi.org/10.1016/j.inffus.2016.05.004
Li S, Dian R, Fang L, Bioucas-Dias JM (2018) Fusing Hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Trans Image Process 27:4118–4130. https://doi.org/10.1109/TIP.2018.2836307
Liang J, Zhang Y and Mei S (2017) ‘Hyperspectral and multispectral image fusion using dual-source localized dictionary pair’, in 2017 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2017 - Proceedings. doi: https://doi.org/10.1109/ISPACS.2017.8266485
Lin B, Tao X, Xu M, Dong L, Lu J (2017) Bayesian Hyperspectral and multispectral image fusions via double matrix factorization. IEEE Trans Geosci Remote Sens 55:5666–5678. https://doi.org/10.1109/TGRS.2017.2711640
Lin B, Tao X, Duan Y, Lu J (2018) Hyperspectral and multispectral image fusion based on low rank constrained Gaussian mixture model. IEEE Access. 6:16901–16910. https://doi.org/10.1109/ACCESS.2018.2817071
Liu Y, Chen X, Wang Z, Wang ZJ, Ward RK, Wang X (2018) Deep learning for pixel-level image fusion: recent advances and future prospects. Information Fusion. 42:158–173. https://doi.org/10.1016/j.inffus.2017.10.007
Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA (2019) Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J Photogramm Remote Sens 152:166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015
Masi G, Cozzolino D, Verdoliva L, Scarpa G (2016) Pansharpening by convolutional neural networks. Remote Sens 8. https://doi.org/10.3390/rs8070594
Mayumi N and Iwasaki A (2011) ‘Image sharpening using hyperspectral and multispectral data’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2011.6049179
Mifdal J et al. (2017) ‘Hyperspectral and multispectral wasserstein barycenter for image fusion’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2017.8127721
Moeller M, Wittman T and Bertozzi AL (2009) ‘A variational approach to hyperspectral image fusion’, in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV doi: https://doi.org/10.1117/12.818243
Nezhad, Z. H. et al. (2016) ‘Superresolution of hyperspectral images using spectral unmixing and sparse regularization’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2016.7730882
Nikolakopoulos K, Oikonomidis D (2015) Quality assessment of ten fusion techniques applied on worldview-2. European Journal of Remote Sensing 48:141–167. https://doi.org/10.5721/EuJRS20154809
Palsson F, Sveinsson JR, Ulfarsson MO, Benediktsson JA (2015) Model-based fusion of multi-and hyperspectral images using PCA and wavelets. IEEE Trans Geosci Remote Sens 53:2652–2663. https://doi.org/10.1109/TGRS.2014.2363477
Palsson F, Sveinsson JR, Ulfarsson MO (2017) Multispectral and Hyperspectral image fusion using a 3-D-convolutional neural network. IEEE Geosci Remote Sens Lett 14:639–643. https://doi.org/10.1109/LGRS.2017.2668299
Pohl C, Van Genderen JL (1998) Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19:823–854. https://doi.org/10.1080/014311698215748
Radhakrishnan S, Lakshminarayanan AS, Chatterjee JM, Hemanth DJ (2020) Forest data visualization and land mapping using support vector machines and decision trees. Earth Sci Inf 13(4):1119–1137. https://doi.org/10.1007/s12145-020-00492-3
Rao Y, He L and Zhu J (2017) ‘A residual convolutional neural network for pan-shaprening’, in RSIP 2017 - International Workshop on Remote Sensing with Intelligent Processing, Proceedings. doi: https://doi.org/10.1109/RSIP.2017.7958807
Razzak MI, Naz S and Zaib A (2018) ‘Deep learning for medical image processing: overview, challenges and the future BT - classification in BioApps: automation of decision making’, Springer. doi: https://doi.org/10.1007/978-3-319-65981-7_12
Rezaei H, Karami A and Scheunders P (2018) ‘Hyperspectral and multispectral image fusion based on spectral matching in the Shearlet domain’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2018.8518922
Seifi Majdar R, Ghassemian H (2020) A probabilistic framework for weighted combination of multiple-feature classifications of hyperspectral images. Earth Sci Inf 13:55–69. https://doi.org/10.1007/s12145-019-00411-1
Sheoran S, Mittal N, Gelbukh A (2020) Analysis on application of swarm-based techniques in processing remote sensed data. Earth Sci Inf 13:97–113. https://doi.org/10.1007/s12145-019-00417-9
Sylla D, Minghelli-Roman A, Blanc P, Mangin A, Hembise Fanton d'Andon O (2014) Fusion of multispectral images by extension of the pan-sharpening ARSIS method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 7:1781–1791. https://doi.org/10.1109/JSTARS.2013.2271911
Wang W et al. (2019) ‘Deep blind hyperspectral image fusion’, in Proceedings of the IEEE International Conference on Computer Vision. doi: https://doi.org/10.1109/ICCV.2019.00425
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861
Wei Q et al. (2014) ‘Fusion of multispectral and hyperspectral images based on sparse representation’, in European Signal Processing Conference
Wei Q, Bioucas-Dias J, Dobigeon N, Tourneret JY (2015) Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans Geosci Remote Sens 53:3658–3668. https://doi.org/10.1109/TGRS.2014.2381272
Wei Q, Dobigeon N, Tourneret JY, Bioucas-Dias J, Godsill S (2016) R-FUSE: robust fast fusion of multiband images based on solving a Sylvester equation. IEEE Signal Processing Letters 23:1632–1636. https://doi.org/10.1109/LSP.2016.2608858
Wei Q, Dobigeon N, Tourneret JY (2014a) ‘Bayesian fusion of hyperspectral and multispectral images’, in ICASSP. IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. https://doi.org/10.1109/ICASSP.2014.6854186
Wei Q, Dobigeon N and Tourneret JY (2014b) ‘Bayesian fusion of multispectral and hyperspectral images with unknown sensor spectral response’, in 2014 IEEE International Conference on Image Processing, ICIP 2014. doi: https://doi.org/10.1109/ICIP.2014.7025140
Wei Q, Dobigeon N, Tourneret JY (2015a) Bayesian fusion of multi-band images. IEEE Journal on Selected Topics in Signal Processing 9:1117–1127. https://doi.org/10.1109/JSTSP.2015.2407855
Wei Q, Dobigeon N and Tourneret JY (2015b) ‘Bayesian fusion of multispectral and hyperspectral images using a block coordinate descent method’, in Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing doi: https://doi.org/10.1109/WHISPERS.2015.8075373
Wei Q, Dobigeon N, Tourneret JY (2015c) Fast fusion of multi-band images based on solving a Sylvester equation. IEEE Trans Image Process 24:4109–4121. https://doi.org/10.1109/TIP.2015.2458572
Winter ME et al. (2006) ‘High-performance fusion of multispectral and hyperspectral data’, in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII doi: https://doi.org/10.1117/12.668622
Xie F, Shi M, Shi Z, Yin J, Zhao D (2017) Multilevel cloud detection in remote sensing images based on deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 10:3631–3640. https://doi.org/10.1109/JSTARS.2017.2686488
Xie Q et al. (2019) ‘Multispectral and hyperspectral image fusion by MS/HS fusion net’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, pp. 1585–1594. doi: https://doi.org/10.1109/CVPR.2019.00168
Xu Y, Wu Z, Chanussot J, Comon P, Wei Z (2020) Nonlocal coupled tensor CP decomposition for Hyperspectral and multispectral image fusion. IEEE Trans Geosci Remote Sens 58:348–362. https://doi.org/10.1109/TGRS.2019.2936486
Yang J, Zhao YQ, Chan JCW (2018) Hyperspectral and multispectral image fusion via deep two-branches convolutional neural network. Remote Sens 10. https://doi.org/10.3390/rs10050800
Yang Q et al. (2019a) ‘Hyperspectral and multispectral image fusion based on deep attention network’, in Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. doi: https://doi.org/10.1109/WHISPERS.2019.8920825
Yang W, Zhang X, Tian Y, Wang W, Xue JH, Liao Q (2019b) Deep learning for single image super-resolution: a brief review. IEEE Transactions on Multimedia 21:3106–3121. https://doi.org/10.1109/TMM.2019.2919431
Yokoya N, Grohnfeldt C, Chanussot J (2017) Hyperspectral and multispectral data fusion: a comparative review of the recent literature. IEEE Geoscience and Remote Sensing Magazine. 5:29–56. https://doi.org/10.1109/MGRS.2016.2637824
Yokoya N, Yairi T, Iwasaki A (2012) Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans Geosci Remote Sens 50:528–537. https://doi.org/10.1109/TGRS.2011.2161320
Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing [review article]. IEEE Comput Intell Mag 13:55–75. https://doi.org/10.1109/MCI.2018.2840738
Zehtabian A, Ghassemian H (2017) An adaptive framework for spectral-spatial classification based on a combination of pixel-based and object-based scenarios. Earth Sci Inf 10:357–368. https://doi.org/10.1007/s12145-017-0298-2
Zhang C, Patras P, Haddadi H (2019) Deep learning in Mobile and wireless networking: a survey. IEEE Communications Surveys and Tutorials 21:2224–2287. https://doi.org/10.1109/COMST.2019.2904897
Zhang F, Zhang K (2020) Superpixel guided structure sparsity for multispectral and hyperspectral image fusion over couple dictionary. Multimed Tools Appl 79:4949–4964. https://doi.org/10.1007/s11042-019-7188-1
Zhang JS, Cao J and Mao B (2017a) ‘Application of deep learning and unmanned aerial vehicle technology in traffic flow monitoring’, in Proceedings of 2017 International Conference on Machine Learning and Cybernetics, ICMLC 2017. doi: https://doi.org/10.1109/ICMLC.2017.8107763
Zhang K, Wang M, Yang S, Xing Y, Qu R (2016) Fusion of panchromatic and multispectral images via coupled sparse non-negative matrix factorization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 9:5740–5747. https://doi.org/10.1109/JSTARS.2015.2475754
Zhang K, Wang M, Yang S, Jiao L (2018a) Spatial-spectral-graph-regularized low-rank tensor decomposition for multispectral and Hyperspectral image fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11:1030–1040. https://doi.org/10.1109/JSTARS.2017.2785411
Zhang K, Wang M, Yang S (2017b) Multispectral and Hyperspectral image fusion based on group spectral embedding and low-rank factorization. IEEE Trans Geosci Remote Sens 55:1363–1371. https://doi.org/10.1109/TGRS.2016.2623626
Zhang Q, Yang LT, Chen Z, Li P (2018b) A survey on deep learning for big data. Information Fusion 42:146–157. https://doi.org/10.1016/j.inffus.2017.10.006
Zhang Y (2012) Wavelet-based Bayesian fusion of multispectral and hyperspectral images using Gaussian scale mixture model. Int J Image Data Fusion 3:23–37. https://doi.org/10.1080/19479832.2010.551522
Zhang Y, Gao Y, et al. (2015a) ‘Hyperspectral and multispectral image fusion based on constrained CNMF unmixing’, in Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. doi: https://doi.org/10.1109/WHISPERS.2015.8075463
Zhang Y, Wang Y, et al. (2015b) ‘Hyperspectral and multispectral image fusion using CNMF with minimum endmember simplex volume and abundance sparsity constraints’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2015.7326172
Zhang Y, De Backer S, Scheunders P (2009) Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images. IEEE Trans Geosci Remote Sens 47:3834–3843. https://doi.org/10.1109/TGRS.2009.2017737
Zhang Y, DeBacker S and Scheunders P (2008) ‘Bayesian fusion of multispectral and hyperspectral image inwavelet domain’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2008.4780029
Zhang Y, He M (2007) Multi-spectral and hyperspectral image fusion using 3-D wavelet transform. J Electron 24:218–224. https://doi.org/10.1007/s11767-005-0232-5
Zhang Y, Mei S and He M (2011) ‘Bayesian fusion of hyperspectral and multispectral images using Gaussian scale mixture prior’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2011.6049727
Zhang Y, Zhao T and He M (2018c) ‘Hyperspectral and multispectral image fusion using local spatial-spectral dictionary pair’, in Proceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017. doi: https://doi.org/10.1109/APSIPA.2017.8282051
Zhao T et al. (2016) ‘Hyperspectral and multispectral image fusion using collaborative representation with local adaptive dictionary pair’, in International Geoscience and Remote Sensing Symposium (IGARSS). doi: https://doi.org/10.1109/IGARSS.2016.7730881
Zhong J, Yang B, Huang G, Zhong F, Chen Z (2016) Remote sensing image fusion with convolutional neural network. Sensing and Imaging 17. https://doi.org/10.1007/s11220-016-0135-6
Zhou F, Hang R, Liu Q, Yuan X (2019) Pyramid fully convolutional network for Hyperspectral and multispectral image fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12:1549–1558. https://doi.org/10.1109/JSTARS.2019.2910990
Zhou Y, Feng L, Hou C, Kung SY (2017) Hyperspectral and multispectral image fusion based on local low rank and coupled spectral Unmixing. IEEE Trans Geosci Remote Sens 55:5997–6009. https://doi.org/10.1109/TGRS.2017.2718728
Zhu XX, Tuia D, Mou L, Xia GS, Zhang L, Xu F, Fraundorfer F (2017) Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine 5:8–36. https://doi.org/10.1109/MGRS.2017.2762307
Zhu Y, Zhang Y, Zhang H, Yang J, Zhao Z (2020) Data augmentation of X-ray images in baggage inspection based on generative adversarial networks. IEEE Access 8:86536–86544. https://doi.org/10.1109/ACCESS.2020.2992861
Code availability
Not applicable
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest/competing interests
Not applicable
Additional information
Communicated by: H. Babaie
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sara, D., Mandava, A.K., Kumar, A. et al. Hyperspectral and multispectral image fusion techniques for high resolution applications: a review. Earth Sci Inform 14, 1685–1705 (2021). https://doi.org/10.1007/s12145-021-00621-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12145-021-00621-6
Keywords
Profiles
- Ajay Kumar Mandava View author profile