Skip to main content
Log in

SRBF_Soft: a Python-based open-source software for regional gravity field modeling using spherical radial basis functions based on the data-adaptive network design methodology

  • Software Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

This study introduces a novel open-source Python software package called SRBF_Soft for the high-resolution regional gravity field determination using various spherical radial basis functions (SBRFs) in terms of point mass, Poisson, and Poisson wavelet kernel. The modeling approach considers residual gravity field functionals generated by the well-known remove-compute-restore (RCR) technique where the long and short wavelength parts of the gravity signal are provided by a global geopotential model (GGM) and digital terrain model (DTM), respectively. A new data-adaptive network design methodology called k-SRBF is used to construct a network of SRBFs. The appropriate bandwidths (depths) are chosen using the generalized cross-validation (GCV) technique. The unknown SRBFs coefficients are estimated by applying the least-squares method where the extended Gauss Markov Model (GMM) with additional prior information is applied if the normal equation matrix is ill-conditioned. In such a case, the optimal regularization parameter is determined by variance component estimation (VCE). By utilizing parallel processing in every stage of the RCR technique, including creating the design matrix, the computational time is remarkably decreased relative to the number of processors used in the modeling. The performance of the software has been tested and validated in the Auvergne test area (France) on the basis of real terrestrial gravity data. The differences between estimated and observed height anomaly points (GNSS/leveling) amount to about 3 cm in terms of standard deviation (STD) for all kernels indicating that the SRBF_Soft possesses the capability to be applied in regional gravity field modeling as an efficient and reliable software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets used in this study are open-source data. The data set generated during the current study are available from the corresponding author on reasonable request.

References

  • Ball GH, Hall DJ (1965) ISODATA, a novel method of data analysis and pattern classification. Technical report NTIS no. AD 699616. Stanford Research Institute, Menlo Park

    Google Scholar 

  • Barthelmes F (1986) Untersuchungen zur Approximation des äußeren Gravitationsfeldes der Erde durch Punktmassen mit optimierten Positionen. Dissertion, Veröffentlichungen des Zentralinstituts für Physik der Erde 92 Zentralinstitut für Physik der Erde. Potsdam: Akademie der Wissenschaften der DDR

  • Bentel K, Schmidt M, Gerlach C (2013a) Different radial basis functions and their applicability for regional gravity field representation on the sphere. GEM - Int J Geomath 4:67–96. https://doi.org/10.1007/s13137-012-0046-1

    Article  Google Scholar 

  • Bentel K, Schmidt M, Rolstad Denby C (2013b) Artifacts in regional gravity representations with spherical radial basis functions. J Geod Sci 3:173–187. https://doi.org/10.2478/jogs-2013-0029

    Article  Google Scholar 

  • Bucha B, Janák J, Papčo J, Bezděk A (2016) High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys J Int 207:949–966. https://doi.org/10.1093/gji/ggw311

    Article  Google Scholar 

  • Chambodut A, Panet I, Mandea M, Diament M, Holschneider M, Jamet O (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys J Int 163:875–899. https://doi.org/10.1111/j.1365-246X.2005.02754.x

    Article  Google Scholar 

  • Claessens S, Featherstone W, Barthelmes F (2001) Experiences with point-mass gravity field modelling in the Perth region, Western Australia. Geomatics Res Australas 75:53–86

    Google Scholar 

  • Denker H (2013) Regional gravity field modeling: theory and practical results. In: Sciences of geodesy - II. Springer, Berlin, pp 185–291. https://doi.org/10.1007/978-3-642-28000-9_5

  • Duquenne H (2007) A data set to test geoid computation methods. In: Proceedings of the 1st international symposium of the international gravity field service (IGFS). Harita Dergisi, General Command of Mapping, Istanbul, Turkey, pp. 61–65

  • Eicker A (2008) Gravity Field Refinement by Radial Basis Functions from In-situ Satellite Data. Ph.D. Thesis. University of Bonn

  • Fecher T, Pail R, Gruber T (2017) GOCO05c: a new combined gravity field model based on full Normal equations and regionally varying weighting. Surv Geophys 38:571–590. https://doi.org/10.1007/s10712-016-9406-y

    Article  Google Scholar 

  • Foroughi I, Safari A, Novák P, Santos M (2018) Application of radial basis functions for height datum unification. Geosciences 8:369. https://doi.org/10.3390/geosciences8100369

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report no. 355, Department of Geodetic Science and Surveying, the Ohio State University, Columbus, USA

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere: with applications to geomathematics. Oxford University Press on Demand, New York

  • Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223. https://doi.org/10.2307/1268518

    Article  Google Scholar 

  • Goyal R, Ågren J, Featherstone WE, Sjöberg LE, Dikshit O, Balasubramanian N (2021) Empirical comparison between stochastic and deterministic modifiers over the French Auvergne geoid computation test-bed. Surv Rev 54:1–13. https://doi.org/10.1080/00396265.2021.1871821

    Article  Google Scholar 

  • Heikkinen M (1981) Solving the shape of the earth by using digital density models, report 81. Finnish Geodetic Institute, Helsinki

    Google Scholar 

  • Karslioglu MO (2005) An interactive program for GPS-based dynamic orbit determination of small satellites. Comput Geosci 31:309–317. https://doi.org/10.1016/j.cageo.2004.10.010

    Article  Google Scholar 

  • Klees R, Tenzer R, Prutkin I, Wittwer T (2008) A data-driven approach to local gravity field modelling using spherical radial basis functions. J Geod 82:457–471. https://doi.org/10.1007/s00190-007-0196-3

    Article  Google Scholar 

  • Klees R, Slobbe DC, Farahani HH (2018a) A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model. J Geod 92:431–442. https://doi.org/10.1007/s00190-017-1076-0

    Article  Google Scholar 

  • Klees R, Slobbe DC, Farahani HH (2018b) How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model? J Geod:1–16. https://doi.org/10.1007/s00190-018-1136-0

  • Koch K-R (1990) Bayesian inference with geodetic applications. Springer, Berlin

    Book  Google Scholar 

  • Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268. https://doi.org/10.1007/s00190-002-0245-x

    Article  Google Scholar 

  • Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76:641–652. https://doi.org/10.1007/s00190-002-0302-5

    Article  Google Scholar 

  • Lieb V, Schmidt M, Dettmering D, Börger K (2016) Combination of various observation techniques for regional modeling of the gravity field. J Geophys Res Solid Earth 121:3825–3845. https://doi.org/10.1002/2015JB012586

    Article  Google Scholar 

  • Lin M, Denker H, Müller J (2019) A comparison of fixed- and free-positioned point mass methods for regional gravity field modeling. J Geodyn 125:32–47. https://doi.org/10.1016/j.jog.2019.01.001

    Article  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, pp. 281–297

  • Mahbuby H, Safari A, Foroughi I (2017) Local gravity field modeling using spherical radial basis functions and a genetic algorithm. Compt Rendus Geosci 349:106–113. https://doi.org/10.1016/j.crte.2017.03.001

    Article  Google Scholar 

  • Mahbuby H, Amerian Y, Nikoofard A, Eshagh M (2021) Application of the nonlinear optimisation in regional gravity field modelling using spherical radial base functions. Stud Geophys Geod 65:261–290. https://doi.org/10.1007/s11200-020-1077-y

    Article  Google Scholar 

  • Marchenko AN (1998) Parameterization of the Earth’s gravity field: point and line singularities. Lviv Astronomical and Geodetical Society, Lviv

    Google Scholar 

  • Marchenko AN, Barthelmes F, Meyer U, Schwintzer P (2001) Regional Geoid Determination: an application to airborne gravity data in the Skagerrak, (Scientific Technical Report STR ; 01/07), Potsdam : Deutsches GeoForschungsZentrum GFZ, 48 S. p. https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_8522_5

  • Mayer-Gürr T, Behzadpour S, Eicker A, Ellmer M, Koch B, Krauss S, Pock C, Rieser D, Strasser S, Süsser-Rechberger B, Zehentner N, Kvas A (2021) GROOPS: a software toolkit for gravity field recovery and GNSS processing. Comput Geosci 155:104864. https://doi.org/10.1016/j.cageo.2021.104864

    Article  Google Scholar 

  • Moritz H (1980) Geodetic reference system 1980. Bull Géodésique 54:395–405. https://doi.org/10.1007/BF02521480

    Article  Google Scholar 

  • Naeimi M (2013) Inversion of satellite gravity data using spherical radial base functions. Leibniz Universität Hannover

    Google Scholar 

  • Panet I, Chambodut A, Diament M, Holschneider M, Jamet O (2006) New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. J Geophys Res Solid Earth 111. https://doi.org/10.1029/2005JB004141

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  • Saadat SA, Safari A, Needell D (2016) Sparse reconstruction of regional gravity signal based on stabilized orthogonal matching pursuit (SOMP). Pure Appl Geophys 173:2087–2099. https://doi.org/10.1007/s00024-015-1228-1

    Article  Google Scholar 

  • Schmidt M, Fengler M, Mayer-Gürr T, Eicker A, Kusche J, Sánchez L, Han SC (2007) Regional gravity modeling in terms of spherical base functions. J Geod 81:17–38. https://doi.org/10.1007/s00190-006-0101-5

    Article  Google Scholar 

  • Schwabe J, Liebsch G, Schirmer U (2016) Refined computation strategies for the new German combined Quasigeoid GCG2016. In: Proceedings the international symposium on gravity, geoid and height systems 2016 (GGHS 2016), Thessaloniki, Greece

  • Tenzer R, Klees R (2008) The choice of the spherical radial basis functions in local gravity field modeling. Stud Geophys Geod 52:287–304. https://doi.org/10.1007/s11200-008-0022-2

    Article  Google Scholar 

  • Thorndike RL (1953) Who belongs in the family? Psychometrika 18:267–276. https://doi.org/10.1007/BF02289263

    Article  Google Scholar 

  • Tscherning CC, Forsberg R (1992) The GRAVSOFT package for geoid determination. In: 1st continental workshop on the geoid in Europe, Research Insitute of Geodesy. Topography and Cartography, Prague, pp. 327–334

  • Vermeer M (1982) The use of mass point models for describing the Finnish gravity field. In: proc. 9th meeting of the Nordic geodetic commission, Gävle, Sweden. pp. 13–17

  • Wessel P, Smith WHF (1995) New version of the generic mapping tools. EOS Trans Am Geophys Union 76:329–329. https://doi.org/10.1029/95EO00198

    Article  Google Scholar 

  • Wu Y, Luo Z, Chen W, Chen Y (2017a) High-resolution regional gravity field recovery from poisson wavelets using heterogeneous observational techniques. Earth Planets Space 69:34. https://doi.org/10.1186/s40623-017-0618-2

    Article  Google Scholar 

  • Wu Y, Zhou H, Zhong B, Luo Z (2017b) Regional gravity field recovery using the GOCE gravity gradient tensor and heterogeneous gravimetry and altimetry data. J Geophys Res Solid Earth 122:6928–6952. https://doi.org/10.1002/2017JB014196

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to give their sincerest thanks to René Forsberg for granting permission to use SELECT, TCGRID, and TC modules of the GRAVSOFT package in SRBF_Soft. Map figures were generated by the Generic Mapping Tools (GMT) (Wessel and Smith 1995).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

RU developed the code, performed the calculations, compiled the figures and wrote the original manuscript. MOK supervised the entire work including the design and analysis of the software. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rasit Ulug.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publications

Not applicable.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulug, R., Karslıoglu, M.O. SRBF_Soft: a Python-based open-source software for regional gravity field modeling using spherical radial basis functions based on the data-adaptive network design methodology. Earth Sci Inform 15, 1341–1353 (2022). https://doi.org/10.1007/s12145-022-00790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00790-y

Keywords

Navigation