Skip to main content

Advertisement

Log in

Landslide identification using machine learning techniques: Review, motivation, and future prospects

  • Review
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The WHO (World Health Organization) study reports that, between 1998-2017, 4.8 million people have been affected by landslides with more than 18000 deaths. The prevailing climate change and erratic high intensity rainfall are expected to trigger more landslides, which can increase the death rates per year in future. Therefore, evolving successful mechanisms to identify and predict landslides is critical in risk reduction and post-disaster management activities. With the applications of Machine Learning , the success rates of landslide identification have been improved significantly. This review paper presents the results of data analysis on the papers published for the last three decades on varying degrees of reliability and success rate on the theme “Machine Learning for landslide identification, mitigation, and prediction”. The analyses show how the reliability and accuracy of the landslide prediction model have improved considerably with the tools available in Machine Learning. Though many conventional tools such as statistical packages are available, the Machine Learning algorithms gave a robust dimension for a reliable landslide risk analysis, modeling prediction tools and post-disaster damage identification, This paper recommends a multi-modal framework for characterising landslides in all aspects using Machine Learning techniques that could outperform single modal approaches. Open research problems and future research dimensions by integrating landsat data and Machine Learning for landslide studies are also discussed in this work which would be beneficial for researchers in this field and also to the community at large across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Acharya TD (2018) Regional scale landslide hazard assessment using machine learning methods in Nepal. PhD thesis, Kangwon National University, Chuncheon

  • Adineh F, Motamedvaziri B, Ahmadi H, Moeini A (2018) Landslide susceptibility mapping using genetic algorithm for the rule set production (garp) model. J Mt Sci 15(9):2013–2026

    Article  Google Scholar 

  • Alkhasawneh MS, Ngah UKB, Tien TL, Isa N (2012) Landslide susceptibility hazard mapping techniques review. J Appl Sci(Faisalabad) 12(8):802–808

    Article  Google Scholar 

  • Alkhasawneh MS, Ngah UK, Tay LT, Isa NAM, Al-Batah MS (2014) Modeling and testing landslide hazard using decision tree. J Appl Math 2014:1–9

    Article  Google Scholar 

  • Al-Najjar HA, Kalantar B, Pradhan B, Saeidi V (2019) Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms. In: Earth resources and environmental remote sensing/GIS applications X, SPIE, vol 11156, pp 97–107

  • Al-Najjar HA, Pradhan B, Kalantar B, Sameen MI, Santosh M, Alamri A (2021) Landslide susceptibility modeling: An integrated novel method based on machine learning feature transformation. Remote Sens 13(16):3281

    Article  Google Scholar 

  • Amankwah SOY, Wang G, Gnyawali K, Hagan DFT, Sarfo I, Zhen D, Nooni IK, Ullah W, Duan Z (2022) Landslide detection from bitemporal satellite imagery using attention-based deep neural networks. Landslides 19(10):2459–2471

    Article  Google Scholar 

  • Amit SNKB, Aoki Y (2017) Disaster detection from aerial imagery with convolutional neural network. In: 2017 international electronics symposium on knowledge creation and intelligent computing (IES-KCIC), IEEE, pp 239–245

  • Anoop V, Asharaf S (2022) Integrating artificial intelligence and blockchain for enabling a trusted ecosystem for healthcare sector. In: Intelligent healthcare. Springer, pp. 281–295

  • Arabameri A, Pourghasemi HR, Yamani M (2017) Applying different scenarios for landslide spatial modeling using computational intelligence methods. Environ Earth Sci 76(24):1–20

    Article  Google Scholar 

  • Arabameri A, Saha S, Roy J, Chen W, Blaschke T, Tien Bui D (2020) Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash river watershed, Iran. Remote Sens 12(3):475

    Article  Google Scholar 

  • Arabameri A, Chandra Pal S, Rezaie F, Chakrabortty R, Saha A, Blaschke T, Di Napoli M, Ghorbanzadeh O, Thi Ngo PT (2022) Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int 37(16):4594–4627

    Article  Google Scholar 

  • Basharat M, Ali A, Jadoon IA, Rohn J (2016) Using PCA in evaluating event-controlling attributes of landsliding in the 2005 Kashmir earthquake region, NW Himalayas, Pakistan. Nat Hazards 81(3):1999–2017

    Article  Google Scholar 

  • Bhadra S, Kumar CJ (2022) An insight into diagnosis of depression using machine learning techniques: a systematic review. Curr Med Res Opin 38(5):749–771

    Article  Google Scholar 

  • Biswajeet P, Saro L (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Sci Front 14(6):143–151

    Article  Google Scholar 

  • Bui DT, Hoang N-D, Nguyen H, Tran X-L (2019) Spatial prediction of shallow landslide using bat algorithm optimized machine learning approach: a case study in Lang Son Province, Vietnam. Adv Eng Inf 42:100978

    Article  Google Scholar 

  • Bui DT, Tsangaratos P, Nguyen V-T, Van Liem N, Trinh PT (2020) Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. Catena 188:104426

    Article  Google Scholar 

  • Cai H, Chen T, Niu R, Plaza A (2021) Landslide detection using densely connected convolutional networks and environmental conditions. IEEE J Sel Top Appl Earth Observ Remote Sens 14:5235–5247

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno river basin. Landslides 2(4):329–342

    Article  Google Scholar 

  • Chandra S, Hareendran S et al (2021) Machine learning: a practitioner’s approach. PHI Learning Pvt. Ltd

  • Chang K-T, Merghadi A, Yunus AP, Pham BT, Dou J (2019) Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep 9(1):1–21

    Google Scholar 

  • Chen W, Li X, Wang Y, Chen G, Liu S (2014) Forested landslide detection using lidar data and the random forest algorithm: A case study of the three Gorges, China. Remote Sens Environ 152:291–301

    Article  Google Scholar 

  • Chen F, Yu B, Xu C, Li B (2017a) Landslide detection using probability regression, a case study of Wenchuan, Northwest of Chengdu. Appl Geogr 89:32–40

    Article  Google Scholar 

  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J (2017b) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 151:147–160

    Article  Google Scholar 

  • Chen F, Yu B, Li B (2018a) A practical trial of landslide detection from single-temporal landsat8 images using contour-based proposals and random forest: A case study of national Nepal. Landslides 15(3):453–464

    Article  Google Scholar 

  • Chen W, Zhang S, Li R, Shahabi H (2018b) Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling. Sci Total Environ 644:1006–1018

    Article  Google Scholar 

  • Chen W, Pourghasemi HR, Naghibi SA (2018c) Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms. Bull Eng Geol Environ 77(2):611–629

    Article  Google Scholar 

  • Chen Z, Zhang Y, Ouyang C, Zhang F, Ma J (2018d) Automated landslides detection for mountain cities using multi-temporal remote sensing imagery. Sensors 18(3):821

    Article  Google Scholar 

  • Chen W, Shahabi H, Zhang S, Khosravi K, Shirzadi A, Chapi K, Pham BT, Zhang T, Zhang L, Chai H et al (2018e) Landslide susceptibility modeling based on GIS and novel bagging-based kernel logistic regression. Appl Sci 8(12):2540

    Article  Google Scholar 

  • Cheng G, Guo L, Zhao T, Han J, Li H, Fang J (2013) Automatic landslide detection from remote-sensing imagery using a scene classification method based on BOVW and PLSA. Int J Remote Sens 34(1):45–59

    Article  Google Scholar 

  • Danneels G, Pirard E, Havenith H-B (2007) Automatic landslide detection from remote sensing images using supervised classification methods. In: 2007 IEEE international geoscience and remote sensing symposium. IEEE, pp 3014–3017

  • Darrow MM, Nelson VA, Grilliot M, Wartman J, Jacobs A, Baichtal JF, Buxton C (2022) Geomorphology and initiation mechanisms of the 2020 Haines, Alaska landslide. Landslides, 1–12

  • Depicker A, Jacobs L, Mboga N, Smets B, Van Rompaey A, Lennert M, Wolff E, Kervyn F, Michellier C, Dewitte O et al (2021) Historical dynamics of landslide risk from population and forest-cover changes in the kivu rift. Nature Sustain 4(11):965–974

    Article  Google Scholar 

  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D (2020) Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 17(8):1897–1914

    Article  Google Scholar 

  • Ding A, Zhang Q, Zhou X, Dai B (2016) Automatic recognition of landslide based on CNN and texture change detection. In: 2016 31st youth academic annual conference of Chinese association of automation (YAC). IEEE, pp 444–448

  • Dou J, Chang K-T, Chen S, Yunus AP, Liu J-K, Xia H, Zhu Z (2015) Automatic case-based reasoning approach for landslide detection: Integration of object-oriented image analysis and a genetic algorithm. Remote Sens 7(4):4318–4342

    Article  Google Scholar 

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Han Z, Pham BT (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17(3):641–658

    Article  Google Scholar 

  • Eiras CGS, Souza JRGd, Freitas RDAd, Barella CF, Pereira TM (2021) Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data. Nat Hazards 107(2):1427–1442

    Article  Google Scholar 

  • Ercanoglu M (2005) Landslide susceptibility assessment of se Bartin (West Black sea region, Turkey) by artificial neural networks. Nat Hazard 5(6):979–992

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66(1–4):327–343

    Article  Google Scholar 

  • Esposito A, Giudicepietro F, Scarpetta S, D’auria L, Marinaro M, Martini M (2006) Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at stromboli volcano using neural networks. Bull Seismol Soc Am 96(4A):1230–1240

    Article  Google Scholar 

  • Fang Z, Wang Y, Peng L, Hong H (2020) Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput Geosci 139:104470

    Article  Google Scholar 

  • Fanos AM, Pradhan B, Mansor S, Yusoff ZM, Abdullah AFb (2018) A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides 15(9):1833–1850

    Article  Google Scholar 

  • Ge Y, Chen H, Zhao B, Tang H, Lin Z, Xie Z, Lv L, Zhong P (2018) A comparison of five methods in landslide susceptibility assessment: a case study from the 330-kv transmission line in Gansu Region, China. Environ Earth Sci 77(19):1–15

    Article  Google Scholar 

  • Ghorbanzadeh O, Blaschke T (2019) Optimizing sample patches selection of CNN to improve the miou on landslide detection. In: GISTAM, pp 33–40

  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J (2019) Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens 11(2):196

    Article  Google Scholar 

  • Gibril MBA, Idrees MO, Shafri HZM, Yao K (2018) Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data. J Appl Remote Sens 12(1):016036

    Article  Google Scholar 

  • Goetz J, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11

    Article  Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27

    Article  Google Scholar 

  • Gorsevski PV, Brown MK, Panter K, Onasch CM, Simic A, Snyder J (2016) Landslide detection and susceptibility mapping using lidar and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio. Landslides 13(3):467–484

    Article  Google Scholar 

  • Guha S, Jana RK, Sanyal MK (2022) Artificial neural network approaches for disaster management: A literature review (2010–2021). Int J Disaster Risk Reduct:103276

  • Guo Z, Shi Y, Huang F, Fan X, Huang J (2021) Landslide susceptibility zonation method based on c5. 0 decision tree and k-means cluster algorithms to improve the efficiency of risk management. Geosci Front 12(6):101249

    Article  Google Scholar 

  • Hakim WL, Rezaie F, Nur AS, Panahi M, Khosravi K, Lee C-W, Lee S (2022) Convolutional neural network (cnn) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J Environ Manage 305:114367

    Article  Google Scholar 

  • Harilal GT, Madhu D, Ramesh MV, Pullarkatt D (2019) Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides 16(12):2395–2408

    Article  Google Scholar 

  • He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, Chai H, Bian H, Ma J, Chen Y et al (2019) Landslide spatial modelling using novel bivariate statistical based naïve bayes, rbf classifier, and rbf network machine learning algorithms. Sci Total Environ 663:1–15

    Article  Google Scholar 

  • Hemalatha T, Ramesh MV, Rangan VP (2019) Effective and accelerated forewarning of landslides using wireless sensor networks and machine learning. IEEE Sens J 19(21):9964–9975

    Article  Google Scholar 

  • Herrera Herrera M (2019) Landslide detection using random forest classifier. Master of Science in Geomatics at Delft University of Technology

  • Heryana A, Nugraheni E, Kusumo B, Rojie AF, Setiadi B (2017) Applying agile methods in designing an earthquake and landslide early warning system application for android. In: 2017 international conference on computer, control, informatics and its applications (IC3INA). IEEE, pp. 80–84

  • Hibert C, Michea D, Provost F, Malet J-P, Geertsema M (2018) 20 years of landslide activity in Alaska from automated machine-learning based seismic detection. In: EGU general assembly conference abstracts, pp 8595

  • Hibert C, Michéa D, Provost F, Malet J, Geertsema M (2019) Exploration of continuous seismic recordings with a machine learning approach to document 20 yr of landslide activity in Alaska. Geophys J Int 219(2):1138–1147

    Article  Google Scholar 

  • Hu Q, Zhou Y, Wang S, Wang F, Wang H (2019) Improving the accuracy of landslide detection in “off-site” area by machine learning model portability comparison: a case study of Jiuzhaigou earthquake, China. Remote Sens 11(21):2530

    Article  Google Scholar 

  • Huang L, Xiang L-Y (2018) Method for meteorological early warning of precipitation-induced landslides based on deep neural network. Neural Process Lett 48(2):1243–1260

    Article  Google Scholar 

  • Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. Catena 165:520–529

    Article  Google Scholar 

  • Huang F, Yin K, Huang J, Gui L, Wang P (2017) Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol 223:11–22

    Article  Google Scholar 

  • Huang F, Zhang J, Zhou C, Wang Y, Huang J, Zhu L (2020) A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 17(1):217–229

    Article  Google Scholar 

  • Hussain MA, Chen Z, Zheng Y, Shoaib M, Shah SU, Ali N, Afzal Z (2022) Landslide susceptibility mapping using machine learning algorithm validated by persistent scatterer in-sar technique. Sensors 22(9):3119

    Article  Google Scholar 

  • Ji S, Yu D, Shen C, Li W, Xu Q (2020) Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 17(6):1337–1352

    Article  Google Scholar 

  • Ji J, Cui H, Zhang T, Song J, Gao Y (2022) A GIS-based tool for probabilistic physical modelling and prediction of landslides: GIS-form landslide susceptibility analysis in seismic areas. Landslides:1–19

  • Kadavi PR, Lee C-W, Lee S (2018) Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens 10(8):1252

    Article  Google Scholar 

  • Kalantar B, Ueda N, Lay US, Al-Najjar HAH, Halin AA (2019) Conditioning factors determination for landslide susceptibility mapping using support vector machine learning. In: IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. IEEE, pp 9626–9629

  • Keyport RN, Oommen T, Martha TR, Sajinkumar K, Gierke JS (2018) A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images. Int J Appl Earth Obs Geoinf 64:1–11

    Google Scholar 

  • Kim J-C, Lee S, Jung H-S, Lee S (2018a) Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-chang, Korea. Geocarto Int 33(9):1000–1015

    Article  Google Scholar 

  • Kim HG, Lee DK, Park C, Ahn Y, Kil S-H, Sung S, Biging GS (2018b) Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods. Stoch Env Res Risk Assess 32(11):2987–3019

    Article  Google Scholar 

  • Knevels R, Petschko H, Leopold P, Brenning A (2019) Geographic object-based image analysis for automated landslide detection using open source GIS software. ISPRS Int J Geo Inf 8(12):551

    Article  Google Scholar 

  • Krkač M, Šoljarić D, Bernat S, Arbanas SM (2017) Method for prediction of landslide movements based on random forests. Landslides 14(3):947–960

    Article  Google Scholar 

  • Kulkarni JR, Kulkarni SS, Inamdar MU, Tamhankar NM, Waghmare SB, Thombare KR, Mhetre PS, Khatavkar T, Panse Y, Patwardhan A et al (2022) “satark”: Landslide prediction system over Western Ghats of India. Land 11(5):689

    Article  Google Scholar 

  • Kumar CJ, Das PR (2021) The diagnosis of asd using multiple machine learning techniques. Int J Dev Disabil:1–11

  • Kumar D, Thakur M, Dubey CS, Shukla DP (2017) Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 295:115–125

    Article  Google Scholar 

  • Lai J-S, Tsai F (2019) Improving GIS-based landslide susceptibility assessments with multi-temporal remote sensing and machine learning. Sensors 19(17):3717

    Article  Google Scholar 

  • Lee S (2007) Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea. Int J Remote Sens 28(21):4763–4783

    Article  Google Scholar 

  • Lee S, Ryu J-H, Min K, Won J-S (2003) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landf 28(12):1361–1376

    Article  Google Scholar 

  • Lee S, Hong S-M, Jung H-S (2017) A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability 9(1):48

    Article  Google Scholar 

  • Lee S, Lee M-J, Jung H-S, Lee S (2020) Landslide susceptibility mapping using naïve bayes and Bayesian network models in Umyeonsan, Korea. Geocarto Int 35(15):1665–1679

    Article  Google Scholar 

  • Lei T, Zhang Y, Lv Z, Li S, Liu S, Nandi AK (2019) Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 16(6):982–986

    Article  Google Scholar 

  • Li Z, Shi W, Lu P, Yan L, Wang Q, Miao Z (2016) Landslide mapping from aerial photographs using change detection-based Markov random field. Remote Sens Environ 187:76–90

    Article  Google Scholar 

  • Li H, Xu Q, He Y, Deng J (2018) Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models. Landslides 15(10):2047–2059

    Article  Google Scholar 

  • Li H, He Y, Xu Q, Deng J, Li W, Wei Y (2022) Detection and segmentation of loess landslides via satellite images: A two-phase framework. Landslides 19(3):673–686

    Article  Google Scholar 

  • Liu Z, Gilbert G, Cepeda JM, Lysdahl AOK, Piciullo L, Hefre H, Lacasse S (2021) Modelling of shallow landslides with machine learning algorithms. Geosci Front 12(1):385–393

    Article  Google Scholar 

  • Lu P, Qin Y, Li Z, Mondini AC, Casagli N (2019) Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Remote Sens Environ 231:111235

    Article  Google Scholar 

  • Ma Z, Mei G, Piccialli F (2021) Machine learning for landslides prevention: a survey. Neural Comput Appl 33(17):10881–10907

    Article  Google Scholar 

  • Mandal K, Saha S, Mandal S (2021) Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci Front 12(5):101203

    Article  Google Scholar 

  • Manfré LA, Shinohara EJ, Silva JB, Siqueira RNDP, Quintanilha JA (2000) Assessment of SVM classification process for landslides identification

  • Marjanovic M, Bajat B, Kovacevic M (2009) Landslide susceptibility assessment with machine learning algorithms. In: 2009 international conference on intelligent networking and collaborative systems. IEEE, pp 273–278

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using svm machine learning algorithm. Eng Geol 123(3):225–234

  • Mayoraz F, Cornu T, Vulliet L (1996) Using neural networks to predict slope movements. In: Proc. 7th int. symp. on landslides, Citeseer, vol 1. pp 295–300

  • Meghanadh D, Maurya VK, Kumar M, Dwivedi R (2021) Automatic detection of landslides based on machine learning framework. In: 2021 IEEE international geoscience and remote sensing symposium IGARSS. IEEE, pp 8460–8463

  • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94(3–4):379–400

    Article  Google Scholar 

  • Merghadi A, Abderrahmane B, Tien Bui D (2018) Landslide susceptibility assessment at Mila Basin (Algeria): a comparative assessment of prediction capability of advanced machine learning methods. ISPRS Int J Geo Inf 7(7):268

    Article  Google Scholar 

  • Mezaal MR, Pradhan B, Sameen MI, Mohd Shafri HZ, Yusoff ZM (2017) Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data. Appl Sci 7(7):730

    Article  Google Scholar 

  • Micheletti N, Kanevski M, Bai S, Wang J, Hong T (2013) Intelligent analysis of landslide data using machine learning algorithms. In: Landslide science and practice. Springer, pp 161–167

  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M (2014) Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci 46(1):33–57

    Article  Google Scholar 

  • Musaev A, Wang D, Pu C (2014) LITMUS: landslide detection by integrating multiple sources. In: Hiltz SR et al (eds) 11th international conference information systems for crisis response and management (ISCRAM), May 2014, University Park, Pennsylvania, USA. Available from: https://pdfs.semanticscholar.org/665b/b05b43dec97c905c387c267302a27599f324.pdf

  • Nguyen Q-K, Tien Bui D, Hoang N-D, Trinh PT, Nguyen V-H, Yilmaz I (2017) A novel hybrid approach based on instance based learning classifier and rotation forest ensemble for spatial prediction of rainfall-induced shallow landslides using gis. Sustainability 9(5):813

    Article  Google Scholar 

  • Nguyen VV, Pham BT, Vu BT, Prakash I, Jha S, Shahabi H, Shirzadi A, Ba DN, Kumar R, Chatterjee JM et al (2019) Hybrid machine learning approaches for landslide susceptibility modeling. Forests 10(2):157

    Article  Google Scholar 

  • Oh H-J, Lee S (2017) Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree. Appl Sci 7(10):1000

    Article  Google Scholar 

  • Park I, Lee S (2014) Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area, Korea. Int J Remote Sens 35(16):6089–6112

    Article  Google Scholar 

  • Park S-J, Lee C-W, Lee S, Lee M-J (2018) Landslide susceptibility mapping and comparison using decision tree models: A case study of Jumunjin area, Korea. Remote Sens 10(10):1545

    Article  Google Scholar 

  • Pawluszek K, Borkowski A, Tarolli P (2018) Sensitivity analysis of automatic landslide mapping: numerical experiments towards the best solution. Landslides 15(9):1851–1865

    Article  Google Scholar 

  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia M (2016a) A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ Model Software 84:240–250

    Article  Google Scholar 

  • Pham BT, Bui D, Prakash I, Dholakia M (2016b) Evaluation of predictive ability of support vector machines and naive bayes trees methods for spatial prediction of landslides in Uttarakhand State (India) using GIS. J. Geomat 10(1):71–79

    Google Scholar 

  • Pham BT, Tien Bui D, Prakash I, Nguyen LH, Dholakia M (2017) A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environ Earth Sci 76(10):1–15

    Article  Google Scholar 

  • Pham BT, Prakash I, Bui DT (2018) Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology 303:256–270

    Article  Google Scholar 

  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Bui DT et al (2019) Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches. Catena 175:203–218

    Article  Google Scholar 

  • Pourghasemi HR, Rahmati O (2018) Prediction of the landslide susceptibility: Which algorithm, which precision? Catena 162:177–192

    Article  Google Scholar 

  • Pourghasemi HR, Gayen A, Park S, Lee C-W, Lee S (2018) Assessment of landslide-prone areas and their zonation using logistic regression, logitboost, and naïvebayes machine-learning algorithms. Sustainability 10(10):3697

    Article  Google Scholar 

  • Pradeep J, Shaji E, Chandran S, Ajas H, Chandra SV, Dev SD, Babu DS (2022) Assessment of coastal variations due to climate change using remote sensing and machine learning techniques: A case study from West Coast of India. Estuar Coast Shelf Sci 275:107968

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Seeni MI, Nampak H (2017) Integration of lidar and quickbird data for automatic landslide detection using object-based analysis and random forests. In: Laser scanning applications in landslide assessment. Springer, pp 69–81

  • Prakash N, Manconi A, Loew S (2020) Mapping landslides on eo data: Performance of deep learning models vs. traditional machine learning models. Remote Sens 12(3):346

    Article  Google Scholar 

  • Provost F, Hibert C, Malet J-P, Stumpf A, Doubre C (2016) Automatic classification of endogenous seismic sources within a landslide body using random forest algorithm. In: EGU general assembly conference abstracts. pp 2016–15705

  • Provost F, Hibert C, Malet J-P (2017) Automatic classification of endogenous landslide seismicity using the random forest supervised classifier. Geophys Res Lett 44(1):113–120

    Article  Google Scholar 

  • Qi W, Wei M, Yang W, Xu C, Ma C (2020) Automatic mapping of landslides by the resu-net. Remote Sens 12(15):2487

    Article  Google Scholar 

  • Rosa ML, Sobreira FG, Barella CF (2021) Landslide susceptibility mapping using the statistical method of information value: A study case in Ribeirão Dos Macacos Basin, Minas Gerais, Brazil. An Acad Bras Ciênc 93

  • Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology 109(3–4):108–121

    Article  Google Scholar 

  • Sameen MI, Pradhan B (2019) Landslide detection using residual networks and the fusion of spectral and topographic information. IEEE Access 7:114363–114373

    Article  Google Scholar 

  • Sharma M, Kumar CJ, Deka A (2021) Land cover classification: a comparative analysis of clustering techniques using sentinel-2 data. Int J Sustain Agricult Manage Inf 7(4):321–342

    Google Scholar 

  • Sharma M, Kumar CJ, Deka A (2022a) Early diagnosis of rice plant disease using machine learning techniques. Arch Phytopathol Plant Prot 55(3):259–283

    Article  Google Scholar 

  • Sharma M, Nath K, Sharma RK, Kumar CJ, Chaudhary A (2022b) Ensemble averaging of transfer learning models for identification of nutritional deficiency in rice plant. Electronics 11(1):148

    Article  Google Scholar 

  • Sheth A, Thekkath CA, Mehta P, Tejaswi K, Parekh C, Singh TN, Desai UB (2007) Senslide: a distributed landslide prediction system. ACM SIGOPS Oper Syst Rev 41(2):75–87

    Article  Google Scholar 

  • Song Y, Gong J, Gao S, Wang D, Cui T, Li Y, Wei B (2012) Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China. Comput Geosci 42:189–199

    Article  Google Scholar 

  • Sreelakshmi S, Chandra, SV (2022) Machine learning for disaster management: Insights from past research and future implications. In: 2022 international conference on computing, communication, security and intelligent systems (IC3SIS). IEEE, pp 1–7

  • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using random forests. Remote Sens Environ 115(10):2564–2577

    Article  Google Scholar 

  • Tang X, Tu Z, Wang Y, Liu M, Li D, Fan X (2022) Automatic detection of coseismic landslides using a new transformer method. Remote Sens 14(12):2884

    Article  Google Scholar 

  • Tarantino C, Blonda P, Pasquariello G (2007) Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies. Nat Hazards 41(1):245–267

    Article  Google Scholar 

  • Tavakkoli Piralilou S, Shahabi H, Jarihani B, Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Aryal J (2019) Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens 11(21):2575

    Article  Google Scholar 

  • Tehrani FS, Santinelli G, Herrera Herrera M (2021) Multi-regional landslide detection using combined unsupervised and supervised machine learning. Geomat Nat Haz Risk 12(1):1015–1038

    Article  Google Scholar 

  • Tengtrairat N, Woo WL, Parathai P, Aryupong C, Jitsangiam P, Rinchumphu D (2021) Automated landslide-risk prediction using web GIS and machine learning models. Sensors 21(13):4620

    Article  Google Scholar 

  • Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Pradhan B, Chen W, Khosravi K, Panahi M, Bin Ahmad B, Saro L (2018) Land subsidence susceptibility mapping in South Korea using machine learning algorithms. Sensors 18(8):2464

    Article  Google Scholar 

  • Timonin V, Bai SB, Wang J et al (2008) Landslide data analysis with Gaussian mixture model. In: Proceedings of the 4th biannual meeting of the International Environmental Modelling and Software Society, 7–10 July 2008, Barcelona, pp 1469–1475

  • Tsangaratos P, Ilia I (2014) A supervised machine learning spatial tool for detecting terrain deformation induced by landslide phenomena. In: Proceedings of the 10th international congress of the Hellenic geographical society. pp 22–24

  • Ullo SL, Langenkamp MS, Oikarinen TP, Del Rosso MP, Sebastianelli A, Piccirillo F, Sica S (2019) Landslide geohazard assessment with convolutional neural networks using sentinel-2 imagery data. In: IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. IEEE, pp 9646–9649

  • Ullo SL, Mohan A, Sebastianelli A, Ahamed SE, Kumar B, Dwivedi R, Sinha GR (2021) A new mask r-cnn-based method for improved landslide detection. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3799–3810

    Article  Google Scholar 

  • Wanare R, Iyer KK, Jayanthi P (2022) Recent advances in early warning systems for landslide forecasting. Geohazard Mitig:249–260

  • Wang HB, Sassa K (2006) Rainfall-induced landslide hazard assessment using artificial neural networks. Earth Surf Proc Land 31(2):235–247

    Article  Google Scholar 

  • Wang Y, Wang X, Jian J (2019) Remote sensing landslide recognition based on convolutional neural network. Math Prob Eng 2019

  • Weinke E, Hölbling D, Albrecht F, Friedl B (2002) Interactive web services for landslide and habitat monitoring

  • Xiao L, Zhang Y, Peng G (2018) Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway. Sensors 18(12):4436

    Article  Google Scholar 

  • Xu H, Li X, Gong W (2017) Research on recognition of landslides with remote sensing images based on extreme learning machine. In: 2017 IEEE international conference on computational science and engineering (CSE) and IEEE international conference on embedded and ubiquitous computing (EUC), vol 1. IEEE, pp 740–747

  • Yang Q-Y, Santosh M, Pradeepkumar A, Shaji E, Prasanth R, Dev SD (2015) Crustal evolution in the western margin of the Nilgiri block, Southern India: Insights from zircon u-pb and lu-hf data on Neoarchean magmatic suite. J Asian Earth Sci 113:766–777

    Article  Google Scholar 

  • Yao X, Dai F (2006) Support vector machine modeling of landslide susceptibility using a GIS: A case study. IAEG2006 793:1–12

    Google Scholar 

  • Yao X, Tham L, Dai F (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572–582

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR (2021) Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha basin, Asir region, Saudi Arabia. Geosci Front 12(2):639–655

    Article  Google Scholar 

  • Yu B, Chen F (2017) A new technique for landslide mapping from a large-scale remote sensed image: A case study of central Nepal. Comput Geosci 100:115–124

    Article  Google Scholar 

  • Yu B, Chen F, Muhammad S, Li B, Wang L, Wu M (2017a) A simple but effective landslide detection method based on image saliency. Photogramm Eng Remote Sens 83(5):351–363

    Article  Google Scholar 

  • Yu H, Ma Y, Wang L, Zhai Y, Wang X (2017b) A landslide intelligent detection method based on cnn and rsg_r. In: 2017 IEEE international conference on mechatronics and automation (ICMA). IEEE, pp 40–44

  • Yu B, Chen F, Muhammad S (2018) Analysis of satellite-derived landslide at central Nepal from 2011 to 2016. Environ Earth Sci 77(9):1–12

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR (2018) Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the three gorges reservoir area, China. Comput Geosci 112:23–37

    Article  Google Scholar 

  • Zhu X, Xu Q, Tang M, Li H, Liu F (2018a) A hybrid machine learning and computing model for forecasting displacement of multifactor-induced landslides. Neural Comput Appl 30(12):3825–3835

    Article  Google Scholar 

  • Zhu A-X, Miao Y, Yang L, Bai S, Liu J, Hong H (2018b) Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping. Catena 171:222–233

    Article  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sreelakshmi. The first draft of the manuscript was written by Sreelakshmi and it was critically reviewed by Vinod Chandra S. S. and Shaji E.. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sreelakshmi S..

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S., S., S. S., V.C. & Shaji, E. Landslide identification using machine learning techniques: Review, motivation, and future prospects. Earth Sci Inform 15, 2063–2090 (2022). https://doi.org/10.1007/s12145-022-00889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00889-2

Keywords

Navigation