Skip to main content
Log in

Transfer learning for streamflow forecasting using unguaged MOPEX basins data set

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Floods are significant global hazards that generally lead to loss of lives and billions worth of properties, especially in flood-prone regions. Various excellent artificial intelligence algorithms that are aimed at predicting streamflow to minimize the effects of floods are proposed by researchers. Most of these models depend on the assumption that both training and testing data set are similar and sufficient. However, in reality, many of these data set varies along with time and are insufficient in some new basins. Motivated by the success of transfer learning in natural language processing, image processing and time series forecasting. In this paper, we proposed two hybrid transfer learning models for streamflow forecasting. The proposed models, which integrate Gated Recurrent Unit (GRU) with transfer learning and integration of Long Short Term Memory (LSTM) with transfer learning, are compared to our reference model. The proposed coupled Transfer Learning with the GRU (TL+GRU) model outperforms the baseline models, i.e., the transfer learning model and the coupled Transfer Learning with LSTM model (TL+LSTM) for most of the basins when streamflow and precipitation data set from Model Parameter Estimation Experiment (MOPEX) basins in the United States of America is used. As a result, we can finally conclude that, with Artificial Neural Networks’ (ANN) integration to transfer learning, more enhanced performance are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available at https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/

References

Download references

Acknowledgements

The author(s) received no financial support for the research, authorship, and publication of this article.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

AUM: Methodology, Writing-original draft, Formal analysis, Data curation. SIA: Conceptualization, Methodology, Writing-review & editing, Supervision.

Corresponding author

Correspondence to Abdullahi Uwaisu Muhammad.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, A.U., Abba, S.I. Transfer learning for streamflow forecasting using unguaged MOPEX basins data set. Earth Sci Inform 16, 1241–1264 (2023). https://doi.org/10.1007/s12145-023-00952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-00952-6

Keywords

Navigation