Skip to main content
Log in

A 3D geological model of the Gallocanta Basin (Spain). The basis to update the hydrogeological model

  • RESEARCH
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Three-dimension geological models represent the subsurface geology based on the development of 3D geological structures as an extension of geological maps. This study aims to update the previous geological information of the Gallocanta Basin (NE Spain) by (1) extending the model domain to most parts of the basin and (2) developing a new 3D model. The ultimate objective is to obtain a 3D geological model which provides a more detailed conceptual understanding of the groundwater flow for a future hydrogeological model. We used MOVE 2017 software to render the geological data and develop the new model. The geological 3D model has shown the effectiveness of using three-dimensional analysis as a useful tool for the geological reconstruction of complex areas. The creation of the present three-dimensional model constitutes the basis for geological and hydrogeological works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Please contact authors for data requests.

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Javier Ramajo, Carlos Galé and José María Orellana-Macías. The first draft of the manuscript was written by Javier Ramajo and José María Orellana-Macías and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

  • Aguilar MJ, Ramírez del Pozo J, Riba O (1971) Algunas precisiones sobre la sedimentación y paleoecología del Cretácico inferior en la zona de Utrillas-Villarroya de los Pinares (Teruel). Estudios Geológicos 27:497–512

    Google Scholar 

  • Alvaro M, Capote R, Vegas R (1979) Modelo de evolución geotectónica para. Acta Geològica Hispànica 14:172–177

    Google Scholar 

  • Arthaud F, Matte P (1975) Les decrochements tardi-hercyniens du sud-ouest de l’europe. Geometrie et essai de reconstitution des conditions de la deformation. Tectonophysics, 25(1–2). https://doi.org/10.1016/0040-1951(75)90014-1

  • Artimo A, Mäkinen J, Berg RC, Abert CC, Salonen VP (2003) Three-dimensional geologic modeling and visualization of the Virttaankangas aquifer, southwestern Finland. Hydrogeology Journal 11(3):378–386. https://doi.org/10.1007/s10040-003-0256-6

    Article  Google Scholar 

  • Bascones L, Martín D (1979) Mapa Geológico de España, E.1:50.000 nº 515 (El Pobo de Dueñas). Segunda serie (MAGNA). IGME

  • Bauluz B, Fernandez-Nieto C, Gonzalez Lopez JM (1998) Diagenesis-very low-grade metamorphism of clastic Cambrian and Ordovician sedimentary rocks in the Iberian Range (Spain). Clay Minerals 33(3):373–393. https://doi.org/10.1180/000985598545697

    Article  Google Scholar 

  • Ballesteros D, Malard A, Jeannin PY, Jiménez-Sánchez M, García-Sansegundo J, Meléndez-Asensio M, Sendra G (2015) KARSYS hydrogeological 3D modeling of alpine karst aquifers developed in geologically complex areas: Picos de Europa National Park (Spain). Environmental Earth Sciences 74(12):7699–7714. https://doi.org/10.1007/s12665-015-4712-0

    Article  Google Scholar 

  • Berg RC, Thorleifson H (2001) Geological Models for Groundwater Flow Modeling. En 35th Annual Meeting. North-Central Section. Geological Sociery of America (p. 72). Normal: Illinois State Geological Survey

  • Béthoux N, Theunissen T, Beslier MO, Font Y, Thouvenot F, Dessa JX, …, Guillen A (2016) Earthquake relocation using a 3D a-priori geological velocity model from the western Alps to Corsica: Implication for seismic hazard. Tectonophysics 670:82–100. https://doi.org/10.1016/j.tecto.2015.12.016

  • Burjachs F, Rodó X, Comín F (1996) Gallocanta: Ejemplo de secuencia Palinológica en una laguna efímera. En B. Ruiz Zapata (Ed.), Estudios Palinológicos. XI Simposio de Palinología (pp. 25–29). Alcalá de Henares: Universidad de Alcalá de Henares

  • Capote R, Muñoz JA, Simón JL, Liesa CL, Arlegui LE (2002) Alpine tectonics I: the Alpine system north of the betic cordillera. In: Gibbons W, Moreno T (eds) The Geology of Spain. The Geological Society, London, pp 367–400

    Chapter  Google Scholar 

  • Carls P (1983) La zona Asturoccidental-Leonesa en Aragón y el Macizo del Ebro como prolongación del Macizo Cantábrico. In IGME (Ed.), Libro Jubilar J.M. Ríos (pp. 11–32). Madrid

  • Castañeda C, Javier Gracia F, Luna E, Rodríguez-Ochoa R (2015) Edaphic and geomorphic evidences of water level fluctuations in Gallocanta Lake, NE Spain. Geoderma 239–240:265–279. https://doi.org/10.1016/j.geoderma.2014.11.005

    Article  Google Scholar 

  • CHE (2003) Establecimiento de las normas de explotación de la Unidad Hidrogeológica “Gallocanta” y delimitación de los perímetros de protección de la laguna. Zaragoza

  • Dantín J (1941) La laguna salada de Gallocanta (Zaragoza). Estudios Geográficos 3:269–303

    Google Scholar 

  • De Vicente G (2004) Estructura alpina del Antepaís Ibérico. In A. Vera, J (Ed.), Geología de España (pp. 587–634). Madrid: SGE-IGME

  • Del Olmo P, Portero JM (1980) Mapa geológico de la hoja nº 464 (Used). Mapa Geológico de España E. 1:50.000. Segunda serie (MAGNA), Primera edición. IGME

  • García A, Segura M, Calonge A, Carenas B (1989) Unidades estratigráficas para la organización de la sucesión sedimentaria del Aptiense- Cenomaniense de la Cordillera Ibérica. In: Vera JA (ed) División de unidades estratigráficas en el análisis de cuencas, vol 2. Revista de la Sociedad Geológica de España, Madrid, pp 303–333

    Google Scholar 

  • Goy A, Gómez J, Yebenes A (1976) El jurásico de la Rama Castellana de la Cordillera Ibérica (Mitad Norte) I: Unidades litoestratigráficas. Estudios Geológicos 32:391–423

    Google Scholar 

  • Gracia FJ (1990a) Dinámica Litoral en la Laguna de Gallocanta (Cordilla Ibérica Central). In I Reunión Nacional de Geomorfología (pp. 267–276). Teruel: Sociedad Española de Geomorfología

  • Gracia FJ (1990b) Evolución geomorfológica reciente de la Laguna de Gallocanta (Cordillera Ibérica Central). In I Reunión Nacional de Geomorfología (pp. 277–289). Teruel: Sociedad Española de Geomorfología

  • Gracia FJ (1992) Papel de la karstificación en la evolución cuaternaria de la Laguna de Gallocanta (provincia de Zaragoza). In Actas del III Congreso Geológico de España (pp. 58–62). Salamanca: Sociedad Geológica Española

  • Gracia FJ (1995) Shoreline forms and deposits in Gallocanta Lake (NE Spain). Geomorphology 11:323–335. https://doi.org/10.1016/0169-555X(94)00080-B

    Article  Google Scholar 

  • Gracia FJ, Gutiérrez F, Gutiérrez M (1999) Evolución geomorfológica del polje de Gallocanta (Cordillera Ibérica). Revista de La Sociedad Geológica de España

  • Guglielmetti L, Comina C, Abdelfettah Y, Schill E, Mandrone G (2013) Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region. Tectonophysics 608(November):1025–1036. https://doi.org/10.1016/j.tecto.2013.07.012

    Article  Google Scholar 

  • Guimerà J (2018) Structure of an intraplate fold-and-thrust belt: The Iberian chain. A synthesis. Geologica Acta 16(4):427–438. https://doi.org/10.1344/GeologicaActa2018.16.4.6

    Article  Google Scholar 

  • Haldar SK (2018) Exploration Modeling. In S. K. B. T.-M. E. (Second E. Haldar (Ed.), Mineral Exploration (Principles and Applications) (pp. 195–209). Elsevier. https://doi.org/10.1016/B978-0-12-814022-2.00010-1

  • Hassen I, Gibson H, Hamzaoui-Azaza F, Negro F, Rachid K, Bouhlila R (2016) 3D geological modeling of the Kasserine Aquifer System, Central Tunisia: New insights into aquifer-geometry and interconnections for a better assessment of groundwater resources. Journal of Hydrology 539:223–236. https://doi.org/10.1016/j.jhydrol.2016.05.034

    Article  Google Scholar 

  • Hernández F, Aranegui P (1926) La laguna de Gallocanta y la geología de sus alrededores. Boletín de La Real Sociedad Española de Historia Natural 26:419–429

    Google Scholar 

  • Hernández A, Olivé A, Moissenet E, Carls P, Sdzuy K, Kolb S (1980a) Mapa geológico de la hoja nº 465 (Daroca). Mapa Geológico de España E. 1:50.000. Segunda serie (MAGNA), Primera edición. IGME

  • Hernández A, Olivé A, Pardo G, Villena J, Moissenet E (1980b) Mapa geológico de la hoja nº 491 (Calamocha). Mapa Geológico de España E. 1:50.000. Segunda serie (MAGNA), Primera edición. IGME

  • Howahr M (2016) Water Board of Oldenburg and East Frisia (OOWV) - 3D Geological Models - Application in water resource management and groundwater protection. In 3rd European 3D Geological Modelling meeting (pp. 1–28). Wiesbaden

  • Jørgensen F, Høyer AS, Sandersen PBE, He X, Foged N (2015) Combining 3D geological modelling techniques to address variations in geology, data type and density - An example from Southern Denmark. Computers and Geosciences 81:53–63. https://doi.org/10.1016/j.cageo.2015.04.010

    Article  Google Scholar 

  • Kessler H, Mathers S, Lelliott M, Hughes A, Macdonald D (2007) Rigorous 3D geological models as the basis for groundwater modelling. En H. Thorleifson, R. C. Berg, & H. A. J. Russell (Eds.), Three-dimensional geologic mapping for groundwater applications. Workshop extended abstracts (pp. 27–32). Denver: Minnesota Geological Survey

  • Liesa CL, Casas AM, Simón JL (2018) La tectónica de inversión en una región intraplaca: la Cordillera Ibérica. Revista de la Sociedad Geológica de España 31(2):23–50

    Google Scholar 

  • López Olmedo et al. 2021 Cartografía Continua Geológica de la Cordillera Ibérica (Z1700) a escala 1:50000 GEODE

  • Lotze F (1929) Stratigraphie un Tektonik des Keltiberischen Grundgebirges (Spanien). Abhandlungen Der Gesellschaft Der Wissenschaften in Göttingen. Mathematisch-Physikalische Klasse, 14(2), 1–320

  • Luzón A, Pérez A, Mayayo MJ, Soria AR, Sánchez Goñi MF, Roc AC (2007) Holocene environmental changes in the Gallocanta lacustrine basin, Iberian Range. NE Spain. Holocene 17(5):649–663. https://doi.org/10.1177/0959683607078994

    Article  Google Scholar 

  • Luzón A, Pérez A, Roc AC, Soria AR, Mayayo MJ, Sánchez J (1999) Subambientes sedimentarios del sector noroeste de Gallocanta, Provincia de Zaragoza. Geogaceta 26:55–58

    Google Scholar 

  • Malard A, Jeannin PY, Vouillamoz J, Weber E (2015) Approche intégrée pour la délimitation des bassins d’alimentation et la modélisation du réseau de conduits des systèmes karstiques: application au jura tabulaire Suisse. Hydrogeology Journal 23(7):1341–1357. https://doi.org/10.1007/s10040-015-1287-5

    Article  Google Scholar 

  • Mayayo MJ, Luzón A, Soria AR, Roc AC, Sánchez J, Pérez A (2003) Sedimentological evolution of Holocene Gallocanta Lake, NE Spain. In: Valero B (ed) Limnogeology in Spain: a tribute to Kerry Kelts. Departamento de Publicaciones del CSIC, Madrid, pp 359–384

    Google Scholar 

  • Mont Terri Project (2017) 3D geological model. https://www.mont-terri.ch/en/geology%20/3D-geological-model.html

  • Olivé A, Moissenet E, Hernández Samaniego A, Pardo G, Villena J (1980) Mapa Geológico de España, E.1:50.000 nº 516 (Monreal del Campo). Segunda serie (MAGNA). IGME

  • Pérez-Estaún A, Bea F, Bastida F, Marcos A, Martínez Catalán JR, Martínez Poyatos D, …, Azor A (2004) Macizo Ibérico. In J. A. Vera (Ed.), Geología de España (pp. 21–25). Madrid: SGE-IGME

  • Pérez A, Luzón A, Roc AC, Soria AR, Mayayo MJ, Sánchez JA (2002) Sedimentary facies distribution and genesis of a recent carbonate-rich saline lake: Gallocanta Lake, Iberian Chain. NE Spain. Sedimentary Geology 148(1–2):185–202. https://doi.org/10.1016/S0037-0738(01)00217-2

    Article  Google Scholar 

  • Pérez A, Roc AC, Luzón A, Soria AR, Mayayo MJ, Sánchez J (1999) Cartography and interpretation of facies from the recent saline lake of Gallocanta, Iberian Range, NE Spain. In Abstracts 19th IAS Regional European Meeting of Sedimentology (p. 197). Copenhagen: IAS

  • PETEX (2017). https://www.petex.com/products/move-suite/

  • Portero JM, Del Olmo P, Pardo G, Villena J (1980) Mapa Geológico de España, E.1:50.000 nº 490 (Odón). Segunda serie (MAGNA). IGME

  • Ramos A (1979) Estratigrafía y paleografía del pérmico y triásico al oeste de Molina de Aragón (Prov. de Guadalajara). Universidad Complutense de Madrid

  • Robins NS, Rutter HK, Dumpleton S, Peach DW (2005) The role of 3D visualisation as an analytical tool preparatory to numerical modelling. Journal of Hydrology 301(1):287–295. https://doi.org/10.1016/j.jhydrol.2004.05.004

    Article  Google Scholar 

  • Ross M, Parent M, Lefebvre R (2005) 3D geologic framework models for regional hydrogeology and land-use management: A case study from a Quaternary basin of southwestern Quebec. Canada. Hydrogeology Journal 13(5–6):690–707. https://doi.org/10.1007/s10040-004-0365-x

    Article  Google Scholar 

  • Schütt B (1998) Reconstruction of Holocene paleoenvironments in the endorheic basin of Laguna de Gallocanta, Central Spain by investigation of mineralogical and geochemical characters from lacustrine sediments. Journal of Paleolimnology 20(3):217–234. https://doi.org/10.1023/A:1007924000636

    Article  Google Scholar 

  • Schütt B (2000) Holocene paleohydrology of playa lakes in northern and central Spain: a reconstruction based on the mineral composition of lacustrine sediments. Quaternary International 73(74):7–27. https://doi.org/10.1016/S1040-6182(00)00062-8

    Article  Google Scholar 

  • Thornton JM, Mariethoz G, Brunner P (2018) Erratum: Publisher Correction: A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research (Scientific data (2018) 5 (180238)). Scientific Data 6(1):325. https://doi.org/10.1038/s41597-019-0298-9

    Article  Google Scholar 

  • Turk J, Malard A, Jeannin PY, Petrič M, Gabrovšek F, Ravbar N, …, Sordet V (2015) Hydrogeological characterization of groundwater storage and drainage in an alpine karst aquifer (the Kanin massif, Julian Alps). Hydrological Processes, 29(8), 1986–1998. https://doi.org/10.1002/hyp.10313

  • Turner AK, Gable CW (2007) A review of geological modeling. In Thorleifson H, Berg RC, Russell HAJ (Eds.), Three-dimensional geologic mapping for groundwater applications. Workshop extended abstracts (pp. 81–85). Denver: Minnesota Geological Survey

  • Vanneschi C, Salvini R, Massa G, Riccucci S, Borsani A (2014) Geological 3D modeling for excavation activity in an underground marble quarry in the Apuan Alps (Italy). Computers and Geosciences 69:41–54. https://doi.org/10.1016/j.cageo.2014.04.009

    Article  Google Scholar 

  • Vilas L, Más JR, García A, Arias C, Alonso A, Melendez N, Rincón R (1982) Ibérica Suroccidental. In: García A (ed) El Cretácico de España. Universidad Complutense de Madrid, Madrid, pp 457–514

    Google Scholar 

  • Villena J (1969) Mapa geológico de la Laguna de Gallocanta (Teruel- Zaragoza) y sus alrededores. In V Reunión grupo Esp. Sedimentología. Pamplona

  • Virgili C, Sopeña A, Ramos A, Hernando S (1977) Problemas de la cronoestratigrafía del Trías en España. Cuadernos Geología Ibérica 4:57–88

    Google Scholar 

  • Wellmann F, Schaaf A, de la Varga M, von Hagke C (2019) From Google Earth to 3D Geology Problem 2: Seeing Below the Surface of the Digital Earth. In A. Billi & Å. B. T.-D. en S. G. y T. Fagereng (Eds.), Problems and Solutions in Structural Geology and Tectonics (Vol. 5, pp. 189–204). Elsevier. https://doi.org/10.1016/B978-0-12-814048-2.00015-6

  • Zhu Z, Lei X, Xu N, Shao D, Jiang X, Wu X (2020) Integration of 3D geological modeling and geothermal field analysis for the evaluation of geothermal reserves in the Northwest of Beijing Plain, China. Water (Switzerland), 12(3). https://doi.org/10.3390/w12030638

  • Zhuang H (2013) Dynamic Well Testing in Petroleum Exploration and Development (Second Edi). Elsevier, Waltham

    Google Scholar 

Download references

Funding

This work was supported by the Government of Aragon under grant C137/2016; and the Spanish Ministry of Economy and Competitiveness – FEDER funds [EU] via the Research Project Agro-SOS under grant PID2019-108057RB-I00.

Gobierno de Aragón,C137/2016,Ministerio de Ciencia e Innovación,PID2019-108057RB-I00

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Javier Ramajo, Carlos Galé and José María Orellana-Macías. The first draft of the manuscript was written by Javier Ramajo and José María Orellana-Macías and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Availability of Data and Materials José María Orellana-Macías should be contacted if someone wants to request the data.

Corresponding author

Correspondence to Jose María Orellana-Macías.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by: H. Babaie.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramajo, J., Orellana-Macías, J.M., Galé, C. et al. A 3D geological model of the Gallocanta Basin (Spain). The basis to update the hydrogeological model. Earth Sci Inform 16, 1797–1809 (2023). https://doi.org/10.1007/s12145-023-01001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-01001-y

Keywords

Navigation