Skip to main content
Log in

Convolution-augmented transformer network for hyperspectral image subspace clustering

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2023

This article has been updated

Abstract

With the widespread and successful application of hyperspectral imaging, the task of classifying hyperspectral images has become a meaningful endeavor. This paper introduces a new approach to clustering hyperspectral images called CTNSC, which incorporates an attention mechanism to improve performance. In comparison to many current convolution-based methods for deep subspace clustering, our approach incorporates an attention mechanism to effectively capture the extensive spatial relationships that exist between objects in hyperspectral images. We combine convolution and attention through the use of Conformer blocks, enabling the network to simultaneously capture both local and global features of objects. As a result, our network can identify a more optimal deep affinity matrix, which can be utilized for spectral clustering to achieve better clustering results. We conducted experiments on three real-world datasets, and the results showed that CTNSC achieved excellent clustering performance compared to many commonly used clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The datasets involved in this paper are all public datasets

Change history

References

  • Audebert N, Le Saux B, Lefèvre S (2019) Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci Remote Sens Mag 7(2):159–173

    Article  Google Scholar 

  • Signoroni, A, Savardi, M, Baronio, A, Benini, S (2019) Deep learning meets hyperspectral image analysis: A multidisciplinary review. J Imaging 5(5) https://doi.org/10.3390/jimaging5050052

  • Vali, A, Comai, S, Matteucci, M (2020) Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens 12(15) https://doi.org/10.3390/rs12152495

  • Patro RN, Subudhi S, Biswal PK, Dell’acqua F (2021) A review of unsupervised band selection techniques: Land cover classification for hyperspectral earth observation data. IEEE Geosci Remote Sens Mag 9(3):72–111. https://doi.org/10.1109/MGRS.2021.3051979

    Article  Google Scholar 

  • Pascucci, S, Pignatti, S, Casa, R, Darvishzadeh, R, Huang, W (2020) Special issue "hyperspectral remote sensing of agriculture and vegetation". Remote Sens 12(21) https://doi.org/10.3390/rs12213665

  • Hennessy, A, Clarke, K, Lewis, M (2020) Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sens 12(1) https://doi.org/10.3390/rs12010113

  • Peyghambari S, Zhang Y (2021) Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. J Appl Remote Sens 15(3):031501–031501

    Article  Google Scholar 

  • Krupnik D (2019) Khan, S (2019) Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies. Earth Sci Rev 198:102952

    Article  Google Scholar 

  • Stuart MB, McGonigle AJ, Willmott JR (2019) Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 19(14):3071

    Article  Google Scholar 

  • Kuras A, Brell M, Rizzi J, Burud I (2021) Hyperspectral and lidar data applied to the urban land cover machine learning and neural-network-based classification: A review. Remote Sens 13(17):3393

    Article  Google Scholar 

  • Lv, W, Wang, X (2020) Overview of hyperspectral image classification. J Sensors 2020

  • Paoletti M, Haut J, Plaza J, Plaza A (2019) Deep learning classifiers for hyperspectral imaging: A review. ISPRS J Photogramm Remote Sens 158:279–317

    Article  Google Scholar 

  • Ozdemir A, Polat K (2020) Deep learning applications for hyperspectral imaging: a systematic review. J Inst Electr Comput 2(1):39–56

  • Huang B, Wang Z, Shang J, Chen G, Radenkovic M (2022) A spectral sequencebased nonlocal long short-term memory network for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 15:3041–3051. https://doi.org/10.1109/JSTARS.2022.3159729

    Article  Google Scholar 

  • Manian V, Alfaro-Mejía E, Tokars RP (2022) Hyperspectral image labeling and classification using an ensemble semi-supervised machine learning approach. Sensors 22(4):1623

    Article  Google Scholar 

  • Yao, D, Zhi-li, Z, Xiao-feng, Z, Wei, C, Fang, H, Yao-ming, C, Cai, W-W (2022) Deep hybrid: multi-graph neural network collaboration for hyperspectral image classification. Defence Technology

  • Sun H, Zheng X, Lu X (2021) A supervised segmentation network for hyperspectral image classification. IEEE Trans Image Process 30:2810–2825

    Article  Google Scholar 

  • Sellami A, Tabbone S (2022) Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recognit 121:108224

    Article  Google Scholar 

  • Yue J, Fang L, Rahmani H, Ghamisi P (2021) Self-supervised learning with adaptive distillation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–13

    Google Scholar 

  • Wang Q, Chen M, Zhang J, Kang S, Wang Y (2022) Improved active deep learning for semi-supervised classification of hyperspectral image. Remote Sens 14(1):171

    Article  Google Scholar 

  • Wei W, Xu S, Zhang L, Zhang J, Zhang Y (2021) Boosting hyperspectral image classification with unsupervised feature learning. IEEE Trans Geosci Remote Sens 60:1–15

    Article  Google Scholar 

  • Elhamifar E, Vidal R (2013) Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781. https://doi.org/10.1109/TPAMI.2013.57

    Article  Google Scholar 

  • Chen J, Yang J (2014) Robust subspace segmentation via low-rank representation. IEEE Trans Cybern 44(8):1432–1445. https://doi.org/10.1109/TCYB.2013.2286106

    Article  Google Scholar 

  • Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184. https://doi.org/10.1109/TPAMI.2012.88

    Article  Google Scholar 

  • Vidal R, Favaro P (2014) Low rank subspace clustering (lrsc). Pattern Recognit Lett 43:47–61. https://doi.org/10.1016/j.patrec.2013.08.006. ICPR2012 Awarded Papers

  • Lu, C.-Y, Min, H, Zhao, Z-Q, Zhu, L, Huang, D-S, Yan, S (2012) Robust and efficient subspace segmentation via least squares regression. In: Computer Vision-ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy,October 7-13, 2012, Proceedings, Part VII 12, 347–360. Springer

  • Ji, P, Salzmann, M, Li, H (2014) Efficient dense subspace clustering. In: IEEE Winter Conference on Applications of Computer Vision, 461–468. IEEE

  • Li C-G, You C, Vidal R (2017) Structured sparse subspace clustering: A joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26(6):2988–3001. https://doi.org/10.1109/TIP.2017.2691557

    Article  Google Scholar 

  • Liu, S, Wang, H (2022) Geometric weighting subspace clustering on nonlinear manifolds. Multimed. Tools. App 81:42971–42990

  • Zhang H, Zhai H, Zhang L, Li P (2016) Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images. IEEE Trans Geosci Remote Sens 54(6):3672–3684. https://doi.org/10.1109/TGRS.2016.2524557

    Article  Google Scholar 

  • Huang, S, Zhang, H, Pižurica, A (2018) Joint sparsity based sparse subspace clustering for hyperspectral images. In: 2018 25th IEEE International Conference on Image Processing (ICIP), 3878–3882 https://doi.org/10.1109/ICIP.2018.8451277

  • Wang L, Niu S, Gao X, Liu K, Lu F, Diao Q, Dong J (2021) Fast high-order sparse subspace clustering with cumulative mrf for hyperspectral images. IEEE Geosci Remote Sens Lett 18(1):152–156. https://doi.org/10.1109/LGRS.2020.2968350

    Article  Google Scholar 

  • Bruna, J, Zaremba, W, Szlam, A, LeCun, Y (2013) Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203

  • Defferrard, M, Bresson, X, Vandergheynst, P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. Adv neural inf process sys 29

  • Kipf, T.N, Welling, M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907

  • Cai Y, Zhang Z, Cai Z, Liu X, Jiang X, Yan Q (2021) Graph convolutional subspace clustering: A robust subspace clustering framework for hyperspectral image. IEEE Trans Geosci Remote Sens 59(5):4191–4202. https://doi.org/10.1109/TGRS.2020.3018135

    Article  Google Scholar 

  • Liu S, Wang H (2022) Graph convolutional optimal transport for hyperspectral image spectral clustering. IEEE Trans Geosci Remote Sens 60:1–13. https://doi.org/10.1109/TGRS.2022.3203481

    Article  Google Scholar 

  • Bacca, J, Hinojosa, C.A, Arguello, H (2017) Kernel sparse subspace clustering with total variation denoising for hyperspectral remote sensing images. In: Mathematics in Imaging, 4–5. Optica Publishing Group

  • Zhai H, Zhang H, Xu X, Zhang L, Li P (2017) Kernel sparse subspace clustering with a spatial max pooling operation for hyperspectral remote sensing data interpretation. Remote Sens 9(4):335

    Article  Google Scholar 

  • Gu Y, Chanussot J, Jia X, Benediktsson JA (2017) Multiple kernel learning for hyperspectral image classification: A review. IEEE Trans Geosci Remote Sens 55(11):6547–6565

  • Ji, P, Zhang, T, Li, H, Salzmann, M, Reid, I (2017) Deep subspace clustering networks. Adv neural inf process syst 30

  • Zhou, P, Hou, Y, Feng, J (2018) Deep adversarial subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1596–1604

  • Zhang, J, Li, C-G, You, C, Qi, X, Zhang, H, Guo, J, Lin, Z (2019) Self-supervised convolutional subspace clustering network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5473–5482

  • Kheirandishfard, M, Zohrizadeh, F, Kamangar, F (2020) Deep low-rank subspace clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 864–865

  • Zeng, M, Cai, Y, Liu, X, Cai, Z, Li, X (2019) Spectral-spatial clustering of hyperspectral image based on laplacian regularized deep subspace clustering. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2694–2697 https://doi.org/10.1109/IGARSS.2019.8898947

  • Lei J, Li X, Peng B, Fang L, Ling N, Huang Q (2021) Deep spatial-spectral subspace clustering for hyperspectral image. IEEE Trans Circ Syst Video Technol 31(7):2686–2697. https://doi.org/10.1109/TCSVT.2020.3027616

    Article  Google Scholar 

  • Cai Y, Zeng M, Cai Z, Liu X, Zhang Z (2021) Graph regularized residual subspace clustering network for hyperspectral image clustering. Inf Sci 578:85–101

    Article  Google Scholar 

  • Li T, Cai Y, Zhang Y, Cai Z, Liu X (2022) Deep mutual information subspace clustering network for hyperspectral images. IEEE Geosci and Remote Sens Lett 19:1–5

    Google Scholar 

  • Lund, B.D, Wang, T (2023) Chatting about chatgpt: how may ai and gpt impact academia and libraries? Library Hi Tech News (2023)

  • Gulati, A, Qin, J, Chiu, C-C, Parmar, N, Zhang, Y, Yu, J, Han, W, Wang, S, Zhang, Z, Wu, Y, et al (2020) Conformer: Convolution-augmented transformer for speech recognition. arXiv preprint arXiv:2005.08100

  • Kong Y, Cheng Y, Chen CLP, Wang X (2019) Hyperspectral image clustering based on unsupervised broad learning. IEEE Geosci and Remote Sens Lett 16(11):1741–1745. https://doi.org/10.1109/LGRS.2019.2907598

    Article  Google Scholar 

  • Liu, G, Lin, Z, Yu, Y (2010) Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 663–670

Download references

Funding

This work was supported by the Key Laboratory of Earth Exploration and Information Techniques of Ministry of Education, Chengdu University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Zhongbiao Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhongbiao Zhang or Huajun Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by: H. Babaie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, H., Liu, S. et al. Convolution-augmented transformer network for hyperspectral image subspace clustering. Earth Sci Inform 16, 2439–2453 (2023). https://doi.org/10.1007/s12145-023-01031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-01031-6

Keywords

Navigation