Skip to main content

Advertisement

Log in

Spatially granular poverty index (SGPI) for urban poverty mapping in Jakarta metropolitan area (JMA): a remote sensing satellite imageries and geospatial big data approach

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Accurate and comprehensive urban poverty monitoring is undoubtedly essential to support the urban poverty alleviation targets in many developing countries. The currently available urban poverty monitoring in Indonesia is, however, primarily depends on the expensive and resource-demanding Indonesia National Socio-Economic Survey (SUSENAS). Despite its high-quality poverty statistics, such national-scale survey collection methods are indispensably labor and cost expensive to scale. Alternative data is essentially required to be explored for supporting government poverty data in order to increase the data granularity. In this study, we aim to develop the spatially granular poverty index (SGPI) consisting of multisource remote sensing satellite imageries and big data sources. With 1 km resolution, the SGPI is composed of nighttime light (NTL), normalized difference built-up index (NDBI), carbon monoxide (CO) and nitrogen dioxide (NO2) pollution levels, education and healthcare Point of Interest (POI) data, as alternative economic activity and poverty proxy indicators. Three different approaches of the equal-weighted sum method, the Pearson correlation coefficient method weighted method, and PCA weighted method are compared and evaluated to combine different indicators. Our result shows that the SGPI built in the scope of Jakarta Metropolitan Area (JMA) by using the equal weighted sum with Yeo-Johnson transformation (EWS-YJ) has the highest correlation with official poverty data which is 0.954. Based on visual identifications through high-resolution satellite imagery, the areas with a relatively high SGPI value are densely populated, and vice versa. Our findings suggest that multi-source remote sensing and geospatial big data integration are promising alternative approaches for granular urban poverty mapping based on spatial characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Afira N, Wijayanto AW (2022) Mono-temporal and multi-temporal approaches for burnt area detection using Sentinel-2 satellite imagery (a case study of Rokan Hilir regency, Indonesia). Ecol Inf 69(101677):2022. https://doi.org/10.1016/j.ecoinf.2022.101677

    Article  Google Scholar 

  • Al P, Bakker BFM (2000) "re-engineering social statistics by micro-integration of different sources: an introduction." Netherlands official. Statistics 15:4–6

    Google Scholar 

  • Aprianto K, Wijayanto AW, Pramana S (2022, June) Deep learning approach using satellite imagery data for poverty analysis in Banten, Indonesia. In 2022 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom). IEEE, pp 126–131

  • Asrol A, Ahmad H (2018) Analysis of factors that affect poverty in Indonesia. Revista Espacios 39(45)

  • Aubrecht C, Gunasekera R, Ungar J, Ishizawa O (2016) Consistent yet adaptive global geospatial identification of urban–rural patterns: the iURBAN model. Remote Sens Environ 187:230–240

    Google Scholar 

  • Bai Y, He G, Wang G, Yang G (2020) WE-NDBI-A new index for mapping urban built-up areas from GF-1 WFV images. Remote Sens Lett 11(5):407–415

    Google Scholar 

  • Baroni M, Barthélémy F, Mokrane M (2007) A PCA factor repeat sales index for apartment prices in Paris. J Real Estate Res 29(2):137–158. https://doi.org/10.1080/10835547.2007.12091193

    Article  Google Scholar 

  • Baud ISA, Sridharan N, Pfeffer K (2008) Mapping urban poverty for local governance in an Indian mega-city: the case of Delhi. Urban Stud 45(7):1385–1412

    Google Scholar 

  • Billings ME, Cohen RT, Baldwin CM, Johnson DA, Palen BN, Parthasarathy S, Patel SR et al (2021) Disparities in sleep health and potential intervention models: a focused review. Chest 159(3):1232–1240

    Google Scholar 

  • Bonafoni S, Keeratikasikorn C (2018) Land surface temperature and urban density: multiyear modeling and relationship analysis using MODIS and Landsat data. Remote Sens 10(9):1471

    Google Scholar 

  • Budiantoro, S, Fanggidae V, Saputra W, Maftuchan A, Artha DRP (2013) Multidimensional poverty index (MPI): concept and the measurement in Indonesia. Perkumpulan Prakarsa

  • Cano AB (2019) Urban poverty. The Wiley Blackwell Encyclopedia of Urban and Regional Studies, pp 1–7. https://doi.org/10.1002/9781118568446.eurs0388

  • Chen Q, Ye T, Zhao N, Ding M, Ouyang Z, Jia P, Yue W, Yang X (2021) Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest. Environ Plann B: Urban Anal City Sci 48(7):1876–1894

    Google Scholar 

  • Dawson T et al (2018) A spatial analysis of the relationship between vegetation and poverty. ISPRS Int J Geo Inf 7(3):83. https://doi.org/10.3390/ijgi7030083

    Article  Google Scholar 

  • Duque JC, Patino JE, Ruiz LA, Pardo-Pascual JE (2015) Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landsc Urban Plan 135:11–21. https://doi.org/10.1016/j.landurbplan.2014.11.009

    Article  Google Scholar 

  • Elvidge CD, Baugh K, Zhizhin M, Hsu FC, Ghosh T (2017) VIIRS night-time lights. Int J Remote Sens 38(21):5860–5879

    Google Scholar 

  • Elvidge CD, Sutton PC, Ghosh T, Tuttle BT, Baugh KE, Bhaduri B, Bright E (2009) A global poverty map derived from satellite data. Comput Geosci 35(8):1652–1660

    Google Scholar 

  • Engstrom R, Newhouse D, Haldavanekar V, Copenhaver A, Hersh J (2017) Evaluating the relationship between spatial and spectral features derived from high spatial resolution satellite data and urban poverty in Colombo, Sri Lanka. In 2017 joint urban remote sensing event (JURSE). IEEE, pp 1–4. https://doi.org/10.1109/JURSE.2017.7924590

  • Eva M, Cehan A, Corodescu-Roșca E, Bourdin S (2022) Spatial patterns of regional inequalities: empirical evidence from a large panel of countries. Appl Geogr 140:102638. https://doi.org/10.1016/j.apgeog.2022.102638

    Article  Google Scholar 

  • Fienberg SE, Tanur JM (1983) Large-scale social surveys: perspectives, problems, and prospects. Behav Sci 28(2):135–153

    Google Scholar 

  • Fujii H, Managi S (2016) Economic development and multiple air pollutant emissions from the industrial sector. Environ Sci Pollut Res 23(3):2802–2812

    Google Scholar 

  • Ghosh T, Anderson SJ, Elvidge CD, Sutton PC (2013) Using nighttime satellite imagery as a proxy measure of human well-being. Sustain 5(12):4988–5019

    Google Scholar 

  • Han C, Zhaolin G, Yang H (2021) EKC test of the relationship between nitrogen dioxide pollution and economic growth—a spatial econometric analysis based on Chinese City data. Int J Environ Res Public Health 18(18):9697

    Google Scholar 

  • Haughton J, Khandker SR (2009) Handbook on poverty+ inequality. World Bank Publications

  • He C, Ma Q, Li T, Yang Y, Liu Z (2012) Spatiotemporal dynamics of electric power consumption in Chinese mainland from 1995 to 2008 modeled using DMSP/OLS stable nighttime lights data. J Geogr Sci 22(1):125–136

    Google Scholar 

  • Herbel I, Croitoru AE, Rus AV, Roşca CF, Harpa GV, Ciupertea AF, Rus I (2018) The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city Romania. Theor Appl Climatol 133(3–4):681–695. https://doi.org/10.1007/s00704-017-2196-4

    Article  Google Scholar 

  • Ichwatus Sholihah P, Shaojun C (2018) Impoverishment of induced displacement and resettlement (DIDR) slum eviction development in Jakarta Indonesia. Int J Urban Sustain Dev 10(3):263–278

    Google Scholar 

  • Imran M, Hosen M, Chowdhury MAF (2018) Does poverty lead to crime? Evidence from the United States of America. Int J Soc Econ

  • Iqbal A, Khan AA (2020) Inclusive and sustainable community development and poverty reduction: an empirical study of Sindh, Pakistan. In IOP conference series: earth and environmental science, vol 511, no 1. IOP Publishing, p 012005. https://doi.org/10.1088/1755-1315/511/1/012005

  • Kaplan G, Avdan ZY (2020) Space-borne air pollution observation from Sentinel-5p Tropomi: relationship between pollutants geographical and demographic data.  Int J Geomat Geosci 5(3):130–137

    Google Scholar 

  • Karanam HK, Neela VB (2017) Study of normalized difference built-up (NDBI) index in automatically mapping urban areas from Landsat TN imagery. Int J Eng Sci Math 8:239–248

    Google Scholar 

  • Kayadibi Ö, Aydal D (2019) A comparative predictive analysis of weighted overlay, weighted sum and fuzzy logic for mineral prospectivity mapping of precious and base metal mineralizations at north-east of Gümüşhane city, NE Turkey. Geocarto Int 34(5):539–559

    Google Scholar 

  • Kurniawan R, Saputra AMA, Wijayanto AW, Caesarendra W (2022) Eco-environment vulnerability assessment using remote sensing approach in East Kalimantan, Indonesia. Remote Sens Appl: Soc Environ 27:100791. https://doi.org/10.1016/j.rsase.2022.100791

    Article  Google Scholar 

  • Ledesma C, Garonita OL, Flores LJ, Tingzon I, Dalisay D (2020) Interpretable poverty mapping using social media data, satellite images, and geospatial information. https://doi.org/10.48550/arXiv.2011.1356

  • Lin J, Shi W (2020) Statistical correlation between monthly electric power consumption and VIIRS nighttime light. ISPRS Int J Geo Inf 9(1):32

    Google Scholar 

  • Lin L, Di L, Zhang C, Guo L, Di Y (2021) Remote sensing of urban poverty and gentrification. Remote Sens 13(20):4022

    Google Scholar 

  • Lin S, Winkler C, Wang S, Chen H (2020) Regional determinants of poverty alleviation through entrepreneurship in China. Entrep Reg Dev 32(1–2):41–62

    Google Scholar 

  • Lipton M, Ravallion M (1995) Poverty and policy. Handb Dev Econ 3:2551–2657

    Google Scholar 

  • Liu H, Ma L, Lin X (2021) Estimating spatiotemporal dynamics of county-level fossil fuel consumption based on integrated nighttime light data. J Clean Prod 278:123427

    Google Scholar 

  • Lucci P, Bhatkal T, Khan A (2018) Are we underestimating urban poverty? World Dev 103:297–310

    Google Scholar 

  • Mukaka MJMMJ (2012) Statistics corner: a guide to appropriate use of correlation in medical research. Malawi Med J 24(3):69–71

    Google Scholar 

  • Muthuri JN, Moon J, Idemudia U (2012) Corporate innovation and sustainable community development in developing countries. Bus Soc 51(3):355–381

    Google Scholar 

  • Nanhthavong V, Epprecht M, Hett C, Zaehringer JG, Messerli P (2020) Poverty trends in villages affected by land-based investments in rural Laos. Appl Geogr 124:102298. https://doi.org/10.1016/j.apgeog.2020.102298

    Article  Google Scholar 

  • Niu T, Chen Y, Yuan Y (2020) Measuring urban poverty using multi-source data and a random forest algorithm: a case study in Guangzhou. Sustain Cities Soc 54:102014

    Google Scholar 

  • Noor AM, Alegana VA, Gething PW, Tatem AJ, Snow RW (2008a) Using remotely sensed night-time light as a proxy for poverty in Africa. Popul Health Metrics 6(1):1–13

    Google Scholar 

  • Nurmasari Y, Wijayanto AW (2021) Oil palm plantation detection in Indonesia using Sentinel-2 and Landsat-8 optical satellite imagery (case study: Rokan Hulu regency, Riau Province). Int J Remote Sens Earth Sci (IJReSES) 18(1):1–18. https://doi.org/10.30536/j.ijreses.2021.v18.a3537

    Article  Google Scholar 

  • Pokhriyal N, Jacques DC (2017) Combining disparate data sources for improved poverty prediction and mapping. Proceed Nat Acad Sci 114(46):E9783–E9792

    Google Scholar 

  • Prakash A, Shukla AK, Bhowmick C, Beyer RCM (2019) Night-time luminosity: does it brighten understanding of economic activity in India. Reserve Bank India Occas Pap 40(1):1–24

    Google Scholar 

  • Pribadi DO, Pauleit S (2016) Peri-urban agriculture in Jabodetabek metropolitan area and its relationship with the urban socioeconomic system. Land Use Policy 55:265–274

    Google Scholar 

  • Pokhriyal N, Zambrano O, Linares J, Hernández H (2020) Estimating and forecasting income poverty and inequality in Haiti using satellite imagery and mobile phone data

  • Putri SR, Wijayanto AW (2021) Learning Bayesian network for rainfall prediction modeling in urban area using remote sensing satellite data (case study: Jakarta, Indonesia). Proceed Int Conf Data Sci Off Stat 2021(1):77–90. https://doi.org/10.34123/icdsos.v2021i1.37

    Article  Google Scholar 

  • Putri SR, Wijayanto AW, Sakti AD (2022) Developing relative spatial poverty index using integrated remote sensing and geospatial big data approach: a case study of East Java. Indones ISPRS Int J Geo-Inf 11(5):275

    Google Scholar 

  • Rassanjani S (2018) Ending poverty: factors that might influence the achievement of sustainable development goals (SDGs) in Indonesia. JPAG 8(3):114. https://doi.org/10.5296/jpag.v8i3.13504

    Article  Google Scholar 

  • Riad PHS, Billib M, Hassan AA, Salam MA, El Din ML (2011) Application of the overlay weighted model and Boolean logic to determine the best locations for artificial recharge of groundwater. J Urban Environ Eng 5(2):57–66

    Google Scholar 

  • Rowley HV, Peters GM, Lundie S, Moore SJ (2012) Aggregating sustainability indicators: beyond the weighted sum. J Environ Manag 111:24–33

    Google Scholar 

  • Saadi TDT, Wijayanto AW (2021) Machine learning applied to Sentinel-2 and Landsat-8 multispectral and medium-resolution satellite imagery for the detection of Rice production areas in Nganjuk, East Java, Indonesia. Int J Remote Sens Earth Sci 18(1):19–32 http://repositori.lapan.go.id/id/eprint/1477

    Google Scholar 

  • Sharma K (2019) Hunger in Jharkhand: dimensions of poverty and food security in palamu district. South Asia Res 39(1):43–60

    Google Scholar 

  • Shi K, Chang Z, Chen Z, Wu J, Yu B (2020) Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: a case study of Chongqing. China J Clean Product 255:120245

    Google Scholar 

  • Singla S, Eldawy A (2018) Distributed zonal statistics of big raster and vector data. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 536–539. https://doi.org/10.1145/3274895.3274985

  • Stark T, Wurm M, Zhu XX, Taubenböck H (2020) Satellite-based mapping of urban poverty with transfer-learned slum morphologies. IEEE J Select Top Appl Earth Observ Remote Sens 13:5251–5263

    Google Scholar 

  • Statistics Indonesia (2017) Analysis of child poverty and deprivation of children’s basic rights in Indonesia. https://www.bps.go.id/publication/2017/07/31/07fa1254dd0999a9db391dc1/analisis-kemiskinan-anak-dan-deprivasi-hak-hak-dasar-anak-di-indonesia.html

  • Statistics Indonesia (2021) “Persentase Penduduk Miskin (P0) Menurut Daerah dan Provinsi”

  • Stephens RD, Cadle SH (1991) Remote sensing measurements of carbon monoxide emissions from on-road vehicles. J Air Waste Manage Assoc 41(1):39–46

    Google Scholar 

  • Taghizadeh-Hesary F, Taghizadeh-Hesary F (2020) The impacts of air pollution on health and economy in Southeast Asia. Energies 13(7):1812

    Google Scholar 

  • Triscowati DW, Sartono B, Kurnia A, Dirgahayu D, Wijayanto AW (2020) Classification of rice-plant growth phase using supervised random forest method based on landsat-8 multitemporal data. Int J Remote Sens Earth Sci (IJReSES) 16(2):187–196. https://doi.org/10.30536/j.ijreses.2019.v16.a3217

    Article  Google Scholar 

  • Triscowati DW, Sartono B, Kurnia A, Domiri DD, Wijayanto AW (2019) Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest. Sixth Geoinf Sci Symp 11311:1131102. https://doi.org/10.1117/12.2547216

    Article  Google Scholar 

  • Varshney KR, Chen GH, Abelson B, Nowocin K, Sakhrani V, Xu L, Spatocco BL (2015) Targeting villages for rural development using satellite image analysis. Big Data 3(1):41–53

    Google Scholar 

  • Vîrghileanu M, Săvulescu I, Mihai B-A, Nistor C, Dobre R (2020) Nitrogen dioxide (NO2) pollution monitoring with sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sens 12(21):3575

    Google Scholar 

  • Wang Y, Dianting W, Wang M, Zhou L, Ding J (2018) Density, distance, and division: rural poverty in a developing-country context. Growth Chang 49(3):473–489

    Google Scholar 

  • Wijayanto, AW, Afira, N, Nurkarim, W (2022) Machine learning approaches using satellite data for oil palm area detection in Pekanbaru City, Riau, 2022 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom), 2022, pp. 84-89, https://doi.org/10.1109/CyberneticsCom55287.2022.9865301

  • Wijayanto, AW, Putri, SR (2022) Estimating Rice production using machine learning models on multitemporal Landsat-8 satellite images (case study: Ngawi regency, East Java, Indonesia), 2022 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom), 2022, pp. 280-285, https://doi.org/10.1109/CyberneticsCom55287.2022.9865364

  • Wijayanto, AW, Triscowati, DW, Marsuhandi, AH (2020) Maize field area detection in East Java, Indonesia: an integrated multispectral remote sensing and machine learning approach. 2020 12th international conference on information technology and electrical engineering (ICITEE), 168–173. https://doi.org/10.1109/ICITEE49829.2020.9271683

  • Winarso H, Hudalah D, Firman T (2015) Peri-urban transformation in the Jakarta metropolitan area. Habitat Int 49:221–229

    Google Scholar 

  • WorldPop (2020) World population grid. https://doi.org/10.5258/SOTON/WP00685

  • Wu J, Wang Z, Li W, Peng J (2013) Exploring factors affecting the relationship between light consumption and GDP based on DMSP/OLS nighttime satellite imagery. Remote Sens Environ 134:111–119

    Google Scholar 

  • Wu P, Tan Y (2019) Estimation of poverty based on remote sensing image and convolutional neural network. Adv Remote Sens 8(4):89–98

    Google Scholar 

  • Xu J, Song J, Li B, Liu D, Cao X (2021) Combining night time lights in prediction of poverty incidence at the county level. Appl Geogr 135:102552. https://doi.org/10.1016/j.apgeog.2021.102552

    Article  Google Scholar 

  • Yeh C, Perez A, Driscoll A, Azzari G, Tang Z, Lobell D, Ermon S, Burke M (2020) Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat Commun 11(1):1–11

    Google Scholar 

  • Zhang Y (2016) Urbanization, inequality, and poverty in the People’s Republic of China. ADBI Working Paper 584. Asian Development Bank Institute, Tokyo. Available: http://www.adb.org/publications/urbanization-inequality-and-poverty-prc/

  • Zheng Y, Tang L, Wang H (2021) An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J Clean Prod 328:129488

    Google Scholar 

  • Zhou Y, Ma T, Zhou C, Xu T (2015) Nighttime light derived assessment of regional inequality of socioeconomic development in China. Remote Sens 7(2):1242–1262. https://doi.org/10.3390/rs70201242

    Article  Google Scholar 

  • Zhou Y, Guo Y, Liu Y, Wenxiang W, Li Y (2018) Targeted poverty alleviation and land policy innovation: some practice and policy implications from China. Land Use Policy 74:53–65

    Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design of the study: A.W W. Acquisition of data, Visualization: N.A.U. Analysis and interpretation of data: N.A.U., A.W.W. Writing - Original Draft: N.A.U., A.W.W. Writing - Review & Editing: N.A.U., A.W.W, S.P., E.T.A. Project supervision: S.P., E.T.A. All authors reviewed the manuscript.

Corresponding author

Correspondence to Arie Wahyu Wijayanto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utami, N.A., Wijayanto, A.W., Pramana, S. et al. Spatially granular poverty index (SGPI) for urban poverty mapping in Jakarta metropolitan area (JMA): a remote sensing satellite imageries and geospatial big data approach. Earth Sci Inform 16, 3531–3544 (2023). https://doi.org/10.1007/s12145-023-01084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-01084-7

Keywords

Navigation