Skip to main content

Advertisement

Log in

Deep neural network modeling of river discharge in a tropical humid watershed

  • RESEARCH
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Precise forecast of river discharge is crucial for a variety of sectors, from human activities to the control of environmental hazards, considering growing need for water resources and the effects of climate change. Despite the development of various discharge forecasting models, real-time projections are still difficult. This has necessitated the application of Artificial Intelligence to predict river discharge using satellite data since there is paucity of gauged records in most developing countries. In this research, a 38-year data, obtained from the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), was used to model the discharge of five selected rivers from South Eastern Nigeria watershed. Deep Neural Networks (DNN) modeling technique was engaged. Back propagation learning algorithms of various network topologies were developed for predicting the river’s discharge with respect to other hydrological properties. The developed model was trained and validated with the raw dataset. Results indicated that relative humidity, atmospheric pressure, wind speed, rainfall intensity, radiation, air temperature, and soil temperature govern the discharge of river. The DNN model accurately predicted the river discharge with the 7–25-25–25-1 network structure, as evidenced by 99.91, 99.62, and 99.01% R for the training, validation, and test. The results of this analysis showed that DNN approach is effective at forecasting river discharge with respect to the hydrological characteristics. Decision-makers in the water and environmental sectors can utilize this knowledge in making an informed sustainable development plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Raw dataset used in this study and codes generation are accessible at https://doi.org/https://doi.org/10.5281/zenodo.8414827.

References

Download references

Funding

The author declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Benjamin Nnamdi Ekwueme is the sole author of this research work. The manuscript was conceptualised, prepared, arranged and reviewed by him.

Corresponding author

Correspondence to Benjamin Nnamdi Ekwueme.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Communicated by: H. Babaie

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekwueme, B.N. Deep neural network modeling of river discharge in a tropical humid watershed. Earth Sci Inform 17, 1161–1177 (2024). https://doi.org/10.1007/s12145-023-01219-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-01219-w

Keywords

Navigation