Skip to main content
Log in

Computing changes in regular square grids: towards integration of pixel and edge level analyses

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The aim of the paper is to introduce appropriate tools for quantifying the changes occurred at edge level when analyzing land cover changes. The research is conducted in two directions. Firstly, the binary change index at edge level is introduced and its relationship to the already existing binary change edge (computed at pixel level) is studied. It is proved that a certain inequality between the values of the two indices holds. The theoretical part is completed with real-world examples. The second direction investigated in the paper is the possibility of applying Markov type models, a basic tool in land cover change analysis, in quantifying the changes occurred at edge level. This combined approach is illustrated by a case study and it is shown that it provides complementary information related to the spatial extension of the land cover types and to their distribution. Thus, this type of analysis can improve the methodology of measuring the extent and the implications of land cover changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The source codes and the geo-database used in the analyses are available from the corresponding author.

References

  • Alqadhi S, Mallick J, Balha A, Bindajam A, Singh CK, Hoa PV (2021) Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir. Saudi Arabia. Earth Sci Inform 14(3):1547–1562

    ADS  Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation 21:265–275

    ADS  Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation 21:265–275

    ADS  Google Scholar 

  • Aunap R, Uuemaa E, Roosaare J, Mander U (2006) Spatial correlograms and landscape metrics as indicators of land use changes. In: Martín-Duque JF, Brebbia CA, Emmanouloudis DE, Mander U (eds) Geo-Environment and Landscape Evolution. WIT Press, Southampton, pp 305–315

    Google Scholar 

  • Baker WL (1989) A review of models of landscape change. Landsc Ecol 2(2):111–133

    Google Scholar 

  • Bogaert J, Rousseau R, Van Hecke PII (2000) Alternative area-perimeter ratios for measurement of 2D shape compactness of habitats. Appl Math Comput 111(1):71–85

    MathSciNet  Google Scholar 

  • Botequilha-Leitao A, Miller J, Ahern J, McGarigal K (2006) Measuring Landscapes: A Planner’s Handbook. Island Press, Washington

    Google Scholar 

  • Bribiesca E (1997) Measuring 2-D shape compactness using the contact perimeter. Comput Math Appl 33:1–9

    MathSciNet  Google Scholar 

  • Brown DG, Walker R, Manson S, Seto K (2004) Modelling land-use and land-cover change. In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole DL, Turner BL, Cochrane MA (eds.) Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface, pp. 395–409. Kluwer Academic Publishers, Dordrecht

  • Brown DG, Walker R, Manson S, Seto K (2004) Modelling land-use and land-cover change. In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole DL, Turner BL, Cochrane MA (eds) Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface. Kluwer Academic Publishers, Dordrecht, pp 395–409

    Google Scholar 

  • Coppedge BR, Engle DM, Fuhlendorf SD (2007) Markov models of land cover dynamics in a southern Great Plains grassland region. Landsc Ecol 22(9):1383–1393

    Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25(9):1565–1596

    Google Scholar 

  • Di Gregorio A (2005) Land Cover Classification System (LCSS), Version 2: Classification Concepts and User Manual. FAO Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape Ecology. Wiley, New York

    Google Scholar 

  • Ghosh S, Chatterjee ND, Dinda S (2021) Urban ecological security assessment and forecasting using integrated DEMATEL-ANP and CA-Markov models: a case study on Kolkata Metropolitan Area, India. Sustainable Cities and Society 68

  • Gomarasca MA (2009) Land Use/Land Cover Classification Systems. Basics of Geomatics, pp. 561–598. Springer, Dordrecht

  • Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Niu Z, Huang X, Fu H, Liu S, Li C, Li X, Fu W, Liu C, Xu Y, Wang X, Cheng Q, Hu L, Yao W, Zhang H, Zhu P, Zhao Z, Zhang H, Zheng Y, Ji L, Zhang Y, Chen H, Yan A, Guo J, Yu L, Wang L, Liu X, Shi T, Zhu M, Chen Y, Yang G, Tang P, Xu B, Giri C, Clinton N, Zhu Z, Chen J, Chen J (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens 34(7):2607–2654

    Google Scholar 

  • Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112

    Google Scholar 

  • Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112

    Google Scholar 

  • Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106

    ADS  Google Scholar 

  • Jose Von Thaden J, Laborde J, Guevara S, Venegas-Barrera CS (2018) Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: The contribution of the 1998 protected natural area decree. Land Use Policy 72:443–450

    Google Scholar 

  • Khwarahm NR, Qader S, Ararat K et al (2021) Predicting and mapping land cover/land use changes in Erbil /Iraq using CA-Markov synergy model. Earth Sci Inform 14:393–406

    Google Scholar 

  • Khwarahm NR, Qader S, Ararat K, Al-Quraishi AMF (2021) Predicting and mapping land cover/land use changes in Erbil/Iraq using CA-Markov synergy model. Earth Sci Inform 14(1):393–406

    Google Scholar 

  • Kivinen S (2015) Many a little makes a mickle: cumulative land cover changes and traditional land use in the Kyro reindeer herding district, northern Finland. Appl Geogr 63:204–211

    Google Scholar 

  • Lambin EF, Geist HJ (eds) (2006) Land-Use and Land-Cover Change. Local Processes and Global Impacts. Springer, Berlin

    Google Scholar 

  • Legendre P, Legendre L (1999) Numerical Ecology, 2nd edn. Elsevier Science, New York

    Google Scholar 

  • Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19(4):389–399

    Google Scholar 

  • Liao S, Bai Y (2010) A new grid-cell-based method for error evaluation of vector-toraster conversion. Computational Geosciences 14:539–549

    Google Scholar 

  • Liu XP, Li X, Chen YM, Tan ZZ, Li SY, Ai B (2010) A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc Ecol 25(5):671–682

    Google Scholar 

  • Liu XP, Li X, Chen YM, Tan ZZ, Li SY, Ai B (2010) A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc Ecol 25(5):671–682

    Google Scholar 

  • Lu D, Mausel P, Batistella M, Moran E (2005) Land-cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int J Remote Sens 26(1):101–114

    CAS  Google Scholar 

  • Lu D, Mausel P, Batistella M, Moran E (2005) Land-cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int J Remote Sens 26(1):101–114

    CAS  Google Scholar 

  • Macleod RD, Congalton RG (1998) A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data. Photogramm Eng Remote Sens 64(3):207–216

    Google Scholar 

  • Mas JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20(1):139–152

    Google Scholar 

  • McGarigal K (2002) Landscape pattern metrics. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of Environmetrics. John Wiley & Sons, Chichester, pp 1135–1142

  • Munoz-Sabater J, Dutra E, Agusti-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles DG, Piles M, Rodriguez-Fernandez NJ, Zsoter E, Buontempo C, Thepaut J-N (2021) ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data 13(9):4349–4383

    ADS  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Boerger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Diaz S, Echeverria-Londono S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520(7545):45

  • Oort PAJ (2007) Interpreting the change detection matrix. Remote Sens Environ 108(1):1–8

  • Oort PAJ (2007) Interpreting the change detection matrix. Remote Sens Environ 108(1):1–8

    ADS  Google Scholar 

  • Patil GP, Balbus J, Biging G, Jaja J, Myers WL, Taillie C (2004) Multiscale advanced raster map analysis system: Definition, design and development. Environ Ecol Stat 11(2):113–138

    MathSciNet  Google Scholar 

  • Pătru-Stupariu I, Stupariu MS, Cuculici R, Huzui A (2011) Understanding landscape change using historical maps. Case study Sinaia. Romania. Journal of Maps 2011:206–220

    Google Scholar 

  • Ren Y, Lu Y, Comber A, Fu B, Harris P, Wu L (2019) Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Sci Rev 190:398–415

    ADS  Google Scholar 

  • Ren Y, Lu Y, Comber A, Fu B, Harris P, Wu L (2019) Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Sci Rev 190:398–415

    ADS  Google Scholar 

  • Riitters K, Wickham J, O’Neill R, Jones K, Smith E, Coulston J, Wade T, Smith J (2002) Fragmentation of continental United States forests. Ecosystems 5(8):815–822

    Google Scholar 

  • Riitters K, Wickham J, Wade T (2009) An indicator of forest dynamics using a shifting landscape mosaic. Ecol Indic 9(1):107–117

    Google Scholar 

  • Riitters K, Wickham J, Wade T (2009) An indicator of forest dynamics using a shifting landscape mosaic. Ecol Indic 9(1):107–117

    Google Scholar 

  • Rindfuss RR, Walsh SJ, Turner BL II, Fox J, Mishra V (2004) Developing a science of land change: challenge and methodological issues. PNAS 101(39):13976–13981

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Robinson DT (2012) Land-cover fragmentation and configuration of ownership parcels in an exurban landscape. Urban Ecosyst 15(1):53–69

    Google Scholar 

  • Robinson DT (2012) Land-cover fragmentation and configuration of ownership parcels in an exurban landscape. Urban Ecosyst 15(1):53–69

    Google Scholar 

  • Rodman KC, Crouse JE, Donager JJ, Huffman DW, Meador AJS (2022) Patterns and drivers of recent land cover change on two trailing-edge forest landscapes. For Ecol Manag 521:120449

    Google Scholar 

  • Rodman KC, Crouse JE, Donager JJ, Huffman DW, Meador AJS (2022) Patterns and drivers of recent land cover change on two trailing-edge forest landscapes. For Ecol Manag 521:120449

    Google Scholar 

  • Sewnet A, Abebe G (2018) Land use and land cover change and implication to watershed degradation by using GIS and remote sensing in the Koga watershed, North Western Ethiopia. Earth Sci Inform 11:99–108

    Google Scholar 

  • Song X-P, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature 560(7720):639

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Sulla-Menashe D, Gray JM, Abercrombie SP, Friedl MA (2019) Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens Environ 222:183–194

    ADS  Google Scholar 

  • Turner MG (1990) Spatial and temporal analysis of landscape patterns. Landsc Ecol 4(1):21–30

    MathSciNet  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218

    Google Scholar 

  • Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45(3):421–427

    ADS  Google Scholar 

  • Willmer J, Püttker T, Prevedello J (2022) Global impacts of edge effects on species richness. Biol Conserv 272:109654

    Google Scholar 

  • Woodcock C, Strahler A (1987) The factor of scale in remote sensing. Remote Sens Environ 21(3):311–332

    ADS  Google Scholar 

  • Zhou W, Wang J, Cadenasso ML (2017) Effects of the spatial configuration of trees on urban heat mitigation: a comparative study. Remote Sens Environ 195:1–12

    ADS  Google Scholar 

  • Zhou W, Wang J, Cadenasso ML (2017) Effects of the spatial configuration of trees on urban heat mitigation: a comparative study. Remote Sens Environ 195:1–12

Download references

Acknowledgements

Many thanks are due to Ileana Pătru-Stupariu for stimulating discussions and for processing the geo-database used throughout the paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mihai-Sorin Stupariu conceived the methodology, performed the analyses and wrote the paper.

Corresponding author

Correspondence to Mihai-Sorin Stupariu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: H. Babaie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stupariu, MS. Computing changes in regular square grids: towards integration of pixel and edge level analyses. Earth Sci Inform 17, 1699–1712 (2024). https://doi.org/10.1007/s12145-024-01241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-024-01241-6

Keywords

Navigation