Skip to main content

Advertisement

Log in

Deep learning approaches for short-crop reference evapotranspiration estimation: a case study in Southeastern Australia

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Evapotranspiration (ETo) plays a crucial role in managing water resources and agricultural water consumption. It is also commonly used to quantify the total amount of water lost through a number of important processes that occur among the land and atmosphere. In this research, four deep learning algorithms—CNN, DNN, BiLSTM, and GRU—were applied to predict evapotranspiration based on 14 years of daily data from Victoria, a state in southeastern Australia. The data sample was split into two periods: nine years (2010–2019) for training and four years (2020–2023) for testing. Deep learning algorithms have good performance for predicting evapotranspiration. The results showed that the GRU and DNN models were slightly better than the other two models. In the testing phases, the GRU models found R-Square, RSME, MSE, and MAE values, 0.989, 0.1794, 0.0322, and 0.1417, respectively, while the DNN models performed 0.980, 0.185, 0.0345, and 0.1507 value of R-Square, RMSE, MSE, and MAE, respectively, which indicated the GRU model perform better than other models. The CNN model achieved an R² of 0.958, with an RMSE of 0.364 and an MSE of 0.1330, indicating less precise estimations. Similarly, the BiLSTM model performed better than CNN but still lagged behind GRU and DNN, with an R² of 0.969 and an MSE of 0.0988. Moreover, deep learning models perform well, the GRU model has comparatively excellent performance than other DL models. It has been suggested that the most accurate model to improve future studies on evapotranspiration estimations is the GRU model, which could improve irrigation efficiency and boost crop productivity.  

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be make available on request.

Abbreviations

ETo:

Reference Evapotranspiration

CNN:

Convolutional Neural Network

DNN:

Deep Neural Network

BiLSTM:

Bidirectional Long Short-Term Memory

GRU:

Gated Recurrent Unit

R-Square (R²):

Coefficient of Determination

RMSE:

Root Mean Square Error

MSE:

Mean Squared Error

MAE:

Mean Absolute Error

FAO:

Food and Agriculture Organization

MJ/m²:

Megajoules per square meter

SD:

Standard Deviation

ANN:

Artificial Neural Network

ELM:

Extreme Learning Machine

XGBoost:

Extreme Gradient Boosting

SVM:

Support Vector Machine

MARS:

Multivariate Adaptive Regression Splines

RF:

Random Forest

LightGBM:

Light Gradient Boosting Machine

MLP:

Multi-Layer Perceptron

EMD:

Empirical Mode Decomposition

MAPE:

Mean Absolute Percentage Error

R:

Correlation Coefficient

SD:

Standard Deviation

References

  1. Abdullah SS, Malek MA, Abdullah NS, Kisi O, Yap KS (2015) Extreme Learning machines: a new approach for prediction of reference evapotranspiration. J Hydrol (Amst) 527:184–195. https://doi.org/10.1016/j.jhydrol.2015.04.073

    Article  Google Scholar 

  2. Adnan M, Ahsan Latif M, Nazir M (2017) Estimating Evapotranspiration Using Mach Learn Techniques, www.ijacsa.thesai.org

  3. Ukkola AM, Prentice IC (2013) A worldwide analysis of trends in water-balance evapotranspiration. Hydrol Earth Syst Sci 17:4177–4187. https://doi.org/10.5194/hess-17-4177-2013

    Article  Google Scholar 

  4. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol (Amst) 319:83–95. https://doi.org/10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  5. Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev Geophys 50. https://doi.org/10.1029/2011RG000373

  6. Feng Y, Cui N, Zhao L, Hu X, Gong D (2016) Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. J Hydrol (Amst) 536:376–383. https://doi.org/10.1016/j.jhydrol.2016.02.053

    Article  Google Scholar 

  7. Wu L, Huang G, Fan J, Ma X, Zhou H, Zeng W (2020) Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput Electron Agric 168. https://doi.org/10.1016/j.compag.2019.105115

  8. Jensen ME, Allen RG (2016) Evaporation, evapotranspiration, and irrigation water requirements. Am Soc Civil Eng (ASCE). https://doi.org/10.1061/9780784414057

    Article  Google Scholar 

  9. Granata F (2019) Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric Water Manag 217:303–315. https://doi.org/10.1016/j.agwat.2019.03.015

    Article  Google Scholar 

  10. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A (2014) A review of approaches for evapotranspiration partitioning. Agric Meteorol 184:56–70. https://doi.org/10.1016/j.agrformet.2013.09.003

    Article  Google Scholar 

  11. Li XR, Jia RL, Zhang ZS, Zhang P, Hui R (2018) Hydrological response of biological soil crusts to global warming: a ten-year simulative study. Glob Chang Biol 24:4960–4971. https://doi.org/10.1111/gcb.14378

    Article  Google Scholar 

  12. Moazenzadeh R, Mohammadi B, Shamshirband S, Chau KW (2018) Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng Appl Comput Fluid Mech 12:584–597. https://doi.org/10.1080/19942060.2018.1482476

    Article  Google Scholar 

  13. Eagleson PS (2002) Ecohydrology: darwinian expression of vegetation form and function. Cambridge University Press

    Book  Google Scholar 

  14. Fan J, Yue W, Wu L, Zhang F, Cai H, Wang X, Lu X, Xiang Y (2018) Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric Meteorol 263:225–241. https://doi.org/10.1016/j.agrformet.2018.08.019

    Article  Google Scholar 

  15. Bai Y, Zhang S, Bhattarai N, Mallick K, Liu Q, Tang L, Im J, Guo L, Zhang J (2021) On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient. Agric Meteorol 298–299. https://doi.org/10.1016/j.agrformet.2020.108308

  16. Hirschi M, Michel D, Lehner I, Seneviratne SI (2017) A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrol Earth Syst Sci 21:1809–1825. https://doi.org/10.5194/hess-21-1809-2017

    Article  Google Scholar 

  17. Zhang K, Kimball JS, Running SW (2016) A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water 3:834–853. https://doi.org/10.1002/wat2.1168

    Article  Google Scholar 

  18. Glenn EP, Nagler PL, Huete AR (2010) Vegetation Index methods for estimating Evapotranspiration by Remote Sensing. Surv Geophys 31:531–555. https://doi.org/10.1007/s10712-010-9102-2

    Article  Google Scholar 

  19. Verstraeten WW, Veroustraete F, Feyen J (2008) Assessment of Evapotranspiration and Soil Moisture Content across different scales of Observation. Sensors 8:70–117. www.mdpi.org/sensors

    Article  Google Scholar 

  20. Polhamus A, Fisher JB, Tu KP (2013) What controls the error structure in evapotranspiration models? Agric Meteorol 169:12–24. https://doi.org/10.1016/j.agrformet.2012.10.002

    Article  Google Scholar 

  21. Abramowitz G, Pitman A, Gupta H, Kowalczyk E, Wang Y (2007) Systematic bias in land surface models. J Hydrometeorol 8:989–1001. https://doi.org/10.1175/JHM628.1

    Article  Google Scholar 

  22. Brümmer C, Black TA, Jassal RS, Grant NJ, Spittlehouse DL, Chen B, Nesic Z, Amiro BD, Arain MA, Barr AG, Bourque CPA, Coursolle C, Dunn AL, Flanagan LB, Humphreys ER, Lafleur PM, Margolis HA, McCaughey JH, Wofsy SC (2012) How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric Meteorol 153:14–30. https://doi.org/10.1016/j.agrformet.2011.04.008

    Article  Google Scholar 

  23. Williams CA, Reichstein M, Buchmann N, Baldocchi D, Beer C, Schwalm C, Wohlfahrt G, Hasler N, Bernhofer C, Foken T, Papale D, Schymanski S, Schaefer K (2012) Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour Res 48. https://doi.org/10.1029/2011WR011586

  24. George H, Hargreaves ZA, Samani (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99. https://doi.org/10.13031/2013.26773

    Article  Google Scholar 

  25. Li S, Kang S, Zhang L, Zhang J, Du T, Tong L, Ding R (2016) Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. J Hydrol (Amst) 543:450–461. https://doi.org/10.1016/j.jhydrol.2016.10.022

    Article  Google Scholar 

  26. Gocić M, Motamedi S, Shamshirband S, Petković D, Ch S, Hashim R, Arif M (2015) Soft computing approaches for forecasting reference evapotranspiration. Comput Electron Agric 113:164–173. https://doi.org/10.1016/j.compag.2015.02.010

    Article  Google Scholar 

  27. Citakoglu H, Cobaner M, Haktanir T, Kisi O (2014) Estimation of Monthly Mean Reference Evapotranspiration in Turkey. Water Resour Manage 28:99–113. https://doi.org/10.1007/s11269-013-0474-1

    Article  Google Scholar 

  28. Kisi O (2016) Modeling reference evapotranspiration using three different heuristic regression approaches. Agric Water Manag 169:162–172. https://doi.org/10.1016/j.agwat.2016.02.026

    Article  Google Scholar 

  29. Riou C (1984) Experimental study of potential evapotranspiration (PET) in Central Africa. J Hydrol (Amst) 72:275–288. https://doi.org/10.1016/0022-1694(84)90085-4

    Article  Google Scholar 

  30. Liu C, Cui N, Gong D, Hu X, Feng Y (2020) Evaluation of seasonal evapotranspiration of winter wheat in humid region of East China using large-weighted lysimeter and three models. J Hydrol (Amst) 590. https://doi.org/10.1016/j.jhydrol.2020.125388

  31. Allen RG, Pruitt WO (1991) FAO-24 Reference Evapotranspiration Factors, Journal of Irrigation and Drainage Engineering 117 758–773. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:5(758)

  32. Rezaie-balf M, Naganna SR, Ghaemi A, Deka PC (2017) Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. J Hydrol (Amst) 553:356–373. https://doi.org/10.1016/j.jhydrol.2017.08.006

    Article  Google Scholar 

  33. Wang L, Niu Z, Kisi O, Li C, Yu D (2017) Pan evaporation modeling using four different heuristic approaches. Comput Electron Agric 140:203–213. https://doi.org/10.1016/j.compag.2017.05.036

    Article  Google Scholar 

  34. Zhang Z, Gong Y, Wang Z (2018) Accessible remote sensing data based reference evapotranspiration estimation modelling. Agric Water Manag 210:59–69. https://doi.org/10.1016/j.agwat.2018.07.039

    Article  Google Scholar 

  35. Anapalli SS, Fisher DK, Reddy KN, Wagle P, Gowda PH, Sui R (2018) Quantifying soybean evapotranspiration using an eddy covariance approach. Agric Water Manag 209:228–239. https://doi.org/10.1016/j.agwat.2018.07.023

    Article  Google Scholar 

  36. Pozníková G, Fischer M, van Kesteren B, Orság M, Hlavinka P, Žalud Z, Trnka M (2018) Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: a comparison of micrometeorological methods. Agric Water Manag 209:249–263. https://doi.org/10.1016/j.agwat.2018.07.041

    Article  Google Scholar 

  37. Chai R, Sun S, Chen H, Zhou S (2018) Changes in reference evapotranspiration over China during 1960–2012: attributions and relationships with atmospheric circulation. Hydrol Process 32:3032–3048. https://doi.org/10.1002/hyp.13252

    Article  Google Scholar 

  38. Tang D, Feng Y, Gong D, Hao W, Cui N (2018) Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands. Comput Electron Agric 152:375–384. https://doi.org/10.1016/j.compag.2018.07.029

    Article  Google Scholar 

  39. Negm A, Minacapilli M, Provenzano G, Downscaling of American National Aeronautics and Space (2018) Administration (NASA) daily air temperature in Sicily, Italy, and effects on crop reference evapotranspiration. Agric Water Manag 209:151–162. https://doi.org/10.1016/j.agwat.2018.07.016

    Article  Google Scholar 

  40. Valipour M, Gholami Sefidkouhi MA, Raeini – Sarjaz M (2017) Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric Water Manag 180:50–60. https://doi.org/10.1016/j.agwat.2016.08.025

    Article  Google Scholar 

  41. Fisher JB, Melton F, Middleton E, Hain C, Anderson M, Allen R, McCabe MF, Hook S, Baldocchi D, Townsend PA, Kilic A, Tu K, Miralles DD, Perret J, Lagouarde JP, Waliser D, Purdy AJ, French A, Schimel D, Famiglietti JS, Stephens G, Wood EF (2017) The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour Res 53:2618–2626. https://doi.org/10.1002/2016WR020175

    Article  Google Scholar 

  42. Feng Y, Cui N, Gong D, Zhang Q, Zhao L (2017) Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric Water Manag 193:163–173. https://doi.org/10.1016/j.agwat.2017.08.003

    Article  Google Scholar 

  43. Ferreira LB, da Cunha FF (2020) New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric Water Manag 234. https://doi.org/10.1016/j.agwat.2020.106113

  44. Abrahart RJ, Anctil F, Coulibaly P, Dawson CW, Mount NJ, See LM, Shamseldin AY, Solomatine DP, Toth E, Wilby RL (2012) Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog Phys Geogr 36:480–513. https://doi.org/10.1177/0309133312444943

    Article  Google Scholar 

  45. Keshtegar B, Piri J, Kisi O (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput Electron Agric 127:120–130. https://doi.org/10.1016/j.compag.2016.05.018

    Article  Google Scholar 

  46. Kousari MR, Hosseini ME, Ahani H, Hakimelahi H (2017) Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities. Theor Appl Climatol 127:361–380. https://doi.org/10.1007/s00704-015-1624-6

    Article  Google Scholar 

  47. Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97. https://doi.org/10.1016/j.advwatres.2008.10.005

    Article  CAS  Google Scholar 

  48. Park S, Im J, Jang E, Rhee J (2016) Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric Meteorol 216:157–169. https://doi.org/10.1016/j.agrformet.2015.10.011

    Article  Google Scholar 

  49. Crisci C, Ghattas B, Perera G (2012) A review of supervised machine learning algorithms and their applications to ecological data. Ecol Modell 240:113–122. https://doi.org/10.1016/j.ecolmodel.2012.03.001

    Article  Google Scholar 

  50. Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C, Motte F, Fouilloy A (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105:569–582. https://doi.org/10.1016/j.renene.2016.12.095

    Article  Google Scholar 

  51. Antonopoulos VZ, Gianniou SK, Antonopoulos AV (2016) Artificial neural networks and empirical equations to estimate daily evaporation: application to Lake Vegoritis, Greece. Hydrol Sci J 61:2590–2599. https://doi.org/10.1080/02626667.2016.1142667

    Article  Google Scholar 

  52. Kisi O, Sanikhani H (2015) Modelling long-term monthly temperatures by several data-driven methods using geographical inputs. Int J Climatol 35:3834–3846. https://doi.org/10.1002/joc.4249

    Article  Google Scholar 

  53. Mehdizadeh S, Behmanesh J, Khalili K, Using MARS (2017) SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agric 139:103–114. https://doi.org/10.1016/j.compag.2017.05.002

    Article  Google Scholar 

  54. Misaghian N, Shamshirband S, Petković D, Gocic M, Mohammadi K (2017) Predicting the reference evapotranspiration based on tensor decomposition. Theor Appl Climatol 130:1099–1109. https://doi.org/10.1007/s00704-016-1943-2

    Article  Google Scholar 

  55. Petković D, Gocic M, Shamshirband S, Qasem SN, Trajkovic S (2016) Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration. Theor Appl Climatol 125:555–563. https://doi.org/10.1007/s00704-015-1522-y

    Article  Google Scholar 

  56. Tabari H, Martinez C, Ezani A, Hosseinzadeh P, Talaee (2013) Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration. Irrig Sci 31:575–588. https://doi.org/10.1007/s00271-012-0332-6

    Article  Google Scholar 

  57. Yassin MA, Alazba AA, Mattar MA (2016) Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid conditions. Water Resour 43:412–427. https://doi.org/10.1134/S0097807816020172

    Article  CAS  Google Scholar 

  58. Ferreira LB, da Cunha FF, de Oliveira RA, Fernandes Filho EI (2019) Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – A new approach. J Hydrol (Amst) 572:556–570. https://doi.org/10.1016/j.jhydrol.2019.03.028

    Article  Google Scholar 

  59. Kumar M, Raghuwanshi NS, Singh R (2011) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29:11–25. https://doi.org/10.1007/s00271-010-0230-8

    Article  Google Scholar 

  60. Nourani V, Elkiran G, Abdullahi J (2019) Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements. J Hydrol (Amst) 577. https://doi.org/10.1016/j.jhydrol.2019.123958

  61. Wu L, Fan J (2019) Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0217520

  62. Fan J, Ma X, Wu L, Zhang F, Yu X, Zeng W (2019) Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric Water Manag 225. https://doi.org/10.1016/j.agwat.2019.105758

  63. Kiafar H, Babazadeh H, Marti P, Kisi O, Landeras G, Karimi S, Shiri J (2017) Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations. Theor Appl Climatol 130:377–389. https://doi.org/10.1007/s00704-016-1888-5

    Article  Google Scholar 

  64. Reis MM, da Silva AJ, Zullo Junior J, Tuffi Santos LD, Azevedo AM, Lopes ÉMG (2019) Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Comput Electron Agric 165. https://doi.org/10.1016/j.compag.2019.104937

  65. Pal M, Deswal S (2009) M5 model tree based modelling of reference evapotranspiration. Hydrol Process 23:1437–1443. https://doi.org/10.1002/hyp.7266

    Article  Google Scholar 

  66. Doğan E (2009) Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems. Irrig Sci 58:617–628. https://doi.org/10.1002/ird.445

    Article  Google Scholar 

  67. Gocić M, Amiri MA (2021) Reference Evapotranspiration Prediction using neural networks and Optimum Time lags. Water Resour Manage 35:1913–1926. https://doi.org/10.1007/s11269-021-02820-8

    Article  Google Scholar 

  68. Nagappan M, Gopalakrishnan V, Alagappan M (2020) Prediction of reference evapotranspiration for irrigation scheduling using machine learning. Hydrol Sci J 65:2669–2677. https://doi.org/10.1080/02626667.2020.1830996

    Article  Google Scholar 

  69. Hossein Kazemi M, Shiri J, Marti P, Majnooni-Heris A (2020) Assessing temporal data partitioning scenarios for estimating reference evapotranspiration with machine learning techniques in arid regions. J Hydrol (Amst) 590:125252. https://doi.org/10.1016/j.jhydrol.2020.125252

    Article  Google Scholar 

  70. Shiri J, Marti P, Karimi S, Landeras G (2019) Data splitting strategies for improving data driven models for reference evapotranspiration estimation among similar stations. Comput Electron Agric 162:70–81. https://doi.org/10.1016/j.compag.2019.03.030

    Article  Google Scholar 

  71. Hussain D, Hussain T, Khan AA, Naqvi SAA, Jamil A (2020) A deep learning approach for hydrological time-series prediction: a case study of Gilgit river basin. Earth Sci Inf 13:915–927. https://doi.org/10.1007/s12145-020-00477-2

    Article  Google Scholar 

  72. Masrur Ahmed AA, Feng Q, Ghahramani A, Raj N, Yin Z, Yang L (2021) Hybrid Deep Learning for Week-Ahead Evapotranspiration Forecasting, https://doi.org/10.21203/rs.3.rs-424493/v1

  73. Yang X, Zhang Z, CNN-LSTM Model A (2022) Based on a Meta-learning algorithm to Predict Groundwater Level in the Middle and Lower reaches of the Heihe River, China, Water (Basel) 14. 2377. https://doi.org/10.3390/w14152377

  74. Wu L, Kong C, Hao X, Chen W (2020) A short-term load forecasting Method based on GRU-CNN hybrid neural network model. Math Probl Eng 2020. https://doi.org/10.1155/2020/1428104

  75. Ni G, Zhang X, Ni X, Cheng X, Meng X (2023) A WOA-CNN-BiLSTM-based multi-feature classification prediction model for smart grid financial markets. Front Energy Res 11. https://doi.org/10.3389/fenrg.2023.1198855

  76. Pan M, Zhou H, Cao J, Liu Y, Hao J, Li S, Chen CH (2020) Water Level Prediction Model based on GRU and CNN. IEEE Access 8:60090–60100. https://doi.org/10.1109/ACCESS.2020.2982433

    Article  Google Scholar 

  77. Le XH, Nguyen DH, Jung S, Yeon M, Lee G (2021) Comparison of deep learning techniques for river streamflow forecasting. IEEE Access 9:71805–71820. https://doi.org/10.1109/ACCESS.2021.3077703

    Article  Google Scholar 

  78. Ahmed AAM, Deo RC, Ghahramani A, Feng Q, Raj N, Yin Z, Yang L (2022) New double decomposition deep learning methods for river water level forecasting. Sci Total Environ 831:154722. https://doi.org/10.1016/j.scitotenv.2022.154722

    Article  CAS  Google Scholar 

  79. Jaseena KU, Kovoor BC (2021) Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. Energy Convers Manag 234:113944. https://doi.org/10.1016/j.enconman.2021.113944

    Article  Google Scholar 

  80. Bian C, He H, Yang S, Huang T (2020) State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture. J Power Sources 449. https://doi.org/10.1016/j.jpowsour.2019.227558

  81. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  CAS  Google Scholar 

  82. Montavon G, Samek W, Müller KR (2018) Methods for interpreting and understanding deep neural networks. Digit Signal Processing: Rev J 73:1–15. https://doi.org/10.1016/j.dsp.2017.10.011

    Article  Google Scholar 

  83. Kriegeskorte N, Golan T (2019) Neural network models and deep learning. Curr Biol 29:R231–R236. https://doi.org/10.1016/j.cub.2019.02.034

    Article  CAS  Google Scholar 

  84. Deng C, Ji X, Rainey C, Zhang J, Lu W (2020) Integrating machine learning with human knowledge. IScience 23. https://doi.org/10.1016/j.isci.2020.101656

  85. Das P, Kashem A (2024) Hybrid machine learning approach to prediction of the compressive and flexural strengths of UHPC and parametric analysis with shapley additive explanations. Case Stud Constr Mater 20. https://doi.org/10.1016/j.cscm.2023.e02723

  86. Ahmed A, Song W, Zhang Y, Haque MA, Liu X (2023) Hybrid BO-XGBoost and BO-RF models for the Strength Prediction of Self-compacting mortars with Parametric Analysis. Materials 16. https://doi.org/10.3390/ma16124366

  87. Gueymard CA (2014) A review of validation methodologies and statistical performance indicators for modeled solar radiation data: towards a better bankability of solar projects. Renew Sustain Energy Rev 39:1024–1034. https://doi.org/10.1016/j.rser.2014.07.117

    Article  Google Scholar 

  88. Shi X, Yu X, Esmaeili-Falak M (2023) Improved arithmetic optimization algorithm and its application to carbon fiber reinforced polymer-steel bond strength estimation. Compos Struct 306:116599. https://doi.org/10.1016/j.compstruct.2022.116599

    Article  CAS  Google Scholar 

  89. Ben Seghier MEA, Golafshani EM, Jafari-Asl J, Arashpour M (2023) Metaheuristic‐based machine learning modeling of the compressive strength of concrete containing waste glass. Struct Concrete 24:5417–5440. https://doi.org/10.1002/suco.202200260

    Article  Google Scholar 

  90. Chen Z, Zhu Z, Jiang H, Sun S (2020) Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J Hydrol (Amst) 591. https://doi.org/10.1016/j.jhydrol.2020.125286

  91. Ikram RMA, Mostafa RR, Chen Z, Islam ARMT, Kisi O, Kuriqi A (2023) Zounemat-Kermani, Advanced Hybrid Metaheuristic Machine Learning models Application for Reference Crop Evapotranspiration Prediction. Agronomy 13. https://doi.org/10.3390/agronomy13010098

  92. Dou X, Yang Y (2018) Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Comput Electron Agric 148:95–106. https://doi.org/10.1016/j.compag.2018.03.010

    Article  Google Scholar 

  93. Babaeian E, Paheding S, Siddique N, Devabhaktuni VK, Tuller M (2022) Short-and Mid-Term Forecasts of Actual Evapotranspiration with Deep Learning 2 Short-and Mid-Term Forecasts of Actual Evapotranspiration with Deep

  94. Niaghi AR, Hassanijalilian O, Shiri J (2021) Estimation of reference evapotranspiration using spatial and temporal machine learning approaches. Hydrology 8:1–15. https://doi.org/10.3390/hydrology8010025

    Article  Google Scholar 

  95. Nandagiri L, Kovoor GM (n.d.) Performance evaluation of reference evapotranspiration equations across a range of Indian climates. https://doi.org/10.1061/ASCE0733-94372006132:3238

Download references

Funding

This research did not receive any specific grant from the funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

U.B: Conceptualization, Writing— original draft, Data analysis, Methodology, Software, Formal analysis, Writing – review & editing. Md. S.H.S: Conceptualization, Writing— original draft, Data analysis, Software, Methodology, Writing-review and editing. A.I: Writing— original draft, Formal analysis, Data analysis, Software, and Methodology. S.A: Methodology, Data curation, Formal analysis, Writing-review and editing. A.H: Writing— original draft, Data curation, Formal analysis. P.D: Supervision, Writing— original draft, Data curation, Formal analysis.

Corresponding author

Correspondence to Pobithra Das.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Hassan Babaie.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baishnab, U., Hossen Sajib, M.S., Islam, A. et al. Deep learning approaches for short-crop reference evapotranspiration estimation: a case study in Southeastern Australia. Earth Sci Inform 18, 4 (2025). https://doi.org/10.1007/s12145-024-01616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12145-024-01616-9

Keywords