Skip to main content

Advertisement

Log in

UAV and satellite-based prediction of aboveground biomass in scots pine stands: a comparative analysis of regression and neural network approaches

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Forest ecosystems play a vital role in balancing the global climate through functions such as regulating carbon emissions, carbon sequestration, and energy and water cycles. Aboveground biomass (AGB) is a critical component in forest management to understand better and predict the global carbon cycle. However, traditional methods used in AGB measurement involve time-consuming, costly, and labor-intensive processes. Sentinel-1 (active), Sentinel-2, and Landsat (passive) satellite imagery, which is freely accessible and offers global coverage with frequent updates, and recently developed remote sensing platforms such as Unmanned Aerial Vehicle (UAV) serve as a valuable data source for consistent and continuous monitoring of aboveground biomass. This research focuses on modeling the relationships between AGB and data obtained from various remote sensing sources, including Sentinel-1, Sentinel-2, Landsat 8, and UAV imagery, within pure Scots pine stands in northern Türkiye. The study employs multiple linear regression (MLR) and artificial neural networks (ANNs) to establish these relationships. AGB values for each sample plot were calculated using an allometric equation. Backscatter coefficients and band brightness values were extracted from Sentinel-1 imagery, while reflectance values and vegetation indices were generated from Sentinel-2, Landsat 8 OLI, and UAV imagery. Additionally, texture features were computed for varying window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, and 15 × 15) and orientations (0°, 45°, 90°, and 135°) based on data from Sentinel-2 and Landsat 8 OLI images for each sample plot. The relationships between remote sensing data and AGB were modeled using both MLR and ANN techniques. The findings revealed that the most accurate AGB estimation (R²=0.82; RMSE = 0.35 ton ha⁻¹) was achieved using the texture variables derived from the 9 × 9 window size of Sentinel-2 imagery via the ANNs modeling approach, outperforming other image sources and MLR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

No datasets were generated or analysed during the current study.

11. References

  • Achard F, Stibig HJ, Eva HD, Lindquist EJ, Bouvet A, Arino O, Mayaux P (2010) Estimating tropical deforestation from Earth observation data. Carbon Manag 1(2):271–287. https://doi.org/10.4155/cmt.10.30

    Article  CAS  Google Scholar 

  • Ahmad N, Ullah S, Zhao N, Mumtaz F, Ali A, Ali A, Shakir M (2023) Comparative analysis of Remote Sensing and Geo-Statistical techniques to Quantify Forest Biomass. Forests 14(2):379. https://doi.org/10.3390/f14020379

    Article  Google Scholar 

  • Akıllı A, Hülya A (2020) Evaluation of normalization techniques on neural networks for the prediction of 305-day milk yield. Turkish J Agricultural Eng Res 1(2):354–367. https://doi.org/10.46592/turkager.2020.v01i02.011

    Article  Google Scholar 

  • Alquraish MM, Khadr M (2021) Remote-sensing-based streamflow forecasting using artificial neural network and support vector machine models. Remote Sens 13(20):4147. https://doi.org/10.3390/rs13204147

    Article  Google Scholar 

  • Anees SA, Mehmood K, Khan WR, Sajjad M, Alahmadi TA, Alharbi SA, Luo M (2024) Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the himalayan region. Ecol Inf 82:102732. https://doi.org/10.1016/j.ecoinf.2024.102732

    Article  Google Scholar 

  • Anish KC, Bhattarai S, Pandey P (2022) A comparison of Landsat-8 and Sentinel-2 spectral indices for estimating aboveground forest carbon in a community forest, vol 19. Journal of Institute of Forestry, Forestry, pp 40–55

    Google Scholar 

  • Anuar NI, Khalid N, Tahar KN, Othman AN (2023), September Analyze the Relationship Between Aboveground Biomass and NDVI Values Derived from UAV Multispectral Imagery. In IOP Conference Series: Earth and Environmental Science (Vol. 1240, No. 1, p. 012015). IOP Publishing

  • Argamosa RJL, Blanco AC, Baloloy AB, Candido CG, Dumalag JBLC, Dimapilis LLC, Paringit EC (2018) Modelling above ground biomass of mangrove forest using Sentinel-1 imagery. 4:13–20.

  • Axelsson C, Skidmore AK, Schlerf M, Fauzi A, Verhoef W (2013) Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. Int J Remote Sens 34(5):1724–1743. https://doi.org/10.1080/01431161.2012.725958

    Article  Google Scholar 

  • Baloloy AB, Blanco AC, Candido CG, Argamosa RJL, Dumalag JBLC, Dimapilis LLC, Paringit EC (2018) Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: Rapideye, planetscope and sentinel-2. 4:29–36. https://doi.org/10.5194/isprs-annals-IV-3-29-2018

  • Ban Y, Zhang P, Nascetti A, Bevington AR, Wulder MA (2020) Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning. Sci Rep 10(1):1322. https://doi.org/10.1038/s41598-019-56967-x

    Article  CAS  Google Scholar 

  • Barbosa JM, Broadbent EN, Bitencourt MD (2014) Remote sensing of aboveground biomass in tropical secondary forests: a review. Int J Forestry Res 2014(1):715796. https://doi.org/10.1155/2014/715796

    Article  Google Scholar 

  • Basyuni M, Wirasatriya A, Iryanthony SB, Amelia R, Slamet B, Sulistiyono N, Arifanti VB (2023) Aboveground biomass and carbon stock estimation using UAV photogrammetry in Indonesian mangroves and other competing land uses. Ecol Inf 77:102227

    Article  Google Scholar 

  • Bazzo COG, Kamali B, Hütt C, Bareth G, Gaiser T (2023) A review of estimation methods for aboveground biomass in grasslands using UAV. Remote Sens 15(3):639

    Article  Google Scholar 

  • Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Bareth G (2015) Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf 39:79–87. https://doi.org/10.1016/j.jag.2015.02.012

    Article  Google Scholar 

  • Bindu G, Rajan P, Jishnu ES, Joseph KA (2020) Carbon stock assessment of mangroves using remote sensing and geographic information system. Egypt J Remote Sens Space Sci 23(1):1–9. https://doi.org/10.1016/j.ejrs.2018.04.006

    Article  Google Scholar 

  • Blackburn GA (1998) Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int J Remote Sens 19(4):657–675. https://doi.org/10.1080/014311698215919

    Article  Google Scholar 

  • Bolat F (2021) Ankara Orman Bölge Müdürlüğü Anadolu Karaçamı meşcerelerinde artım ve büyümenin yapay sinir ağları ile modellenmesi. Doktora Tezi (Çankırı Karatekin Üniversitesi, 193 sayfa, Çankırı)

    Google Scholar 

  • Bulut S (2023) Machine learning prediction of above-ground biomass in pure calabrian pine (Pinus brutia Ten.) Stands of the Mediterranean region, Türkiye. Ecol Inf 74:101951. https://doi.org/10.1016/j.ecoinf.2022.101951

    Article  Google Scholar 

  • Bulut S, Sivrikaya F, Günlü A (2022) Evaluating statistical and combine method to predict stand above-ground biomass using remotely sensed data. Arab J Geosci 15(9):838. https://doi.org/10.1007/s12517-022-10140-3

    Article  Google Scholar 

  • Bulut S, Günlü A, Çakır G (2023) Modelling some stand parameters using landsat 8 OLI and Sentinel-2 satellite images by machine learning techniques: a case study in Türkiye. Geocarto Int 38(1):2158238

    Article  Google Scholar 

  • Castillo JAA, Apan AA, Maraseni TN, Salmo III (2017) Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J Photogrammetry Remote Sens 134:70–85. https://doi.org/10.1016/j.isprsjprs.2017.10.016

    Article  Google Scholar 

  • Chen JM (1996) Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens 22(3):229–242. https://doi.org/10.1080/07038992.1996.10855178

    Article  Google Scholar 

  • Chen D, Stow DA, Gong P (2004) Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case. Int J Remote Sens 25:2177–2192. https://doi.org/10.1080/01431160310001618464

    Article  Google Scholar 

  • Chen Q, McRoberts RE, Wang C, Radtke PJ (2016) Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference. Remote Sens Environ 184:350–360. https://doi.org/10.1016/j.rse.2016.07.023

    Article  Google Scholar 

  • Chen L, Wang Y, Ren C, Zhang B, Wang Z (2019) Optimal combination of predictors and algorithms for forest above-ground biomass mapping from Sentinel and SRTM data. Remote Sens 11(4):414. https://doi.org/10.3390/rs11040414

    Article  CAS  Google Scholar 

  • Demirel D, Günlü A, Sakıcı OE (2023) Estimating Above-Ground Carbon of Taurus Cedar Stands Using Sentinel-2 Satellite Image: A Case Study of Elmalı Forest Enterprise. In 3rd International Congress on Engineering and Life Science. Trabzon. https://doi.org/10.61326/icelis.2023.45

  • Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sens Environ 84(3):393–410. https://doi.org/10.1016/S0034-4257(02)00130-X

    Article  Google Scholar 

  • Dong L, Tang S, Min M, Veroustraete F, Cheng J (2019) Aboveground forest biomass based on OLSR and an ANN model integrating LiDAR and optical data in a mountainous region of China. Int J Remote Sens 40(15):6059–6083. https://doi.org/10.1080/01431161.2019.1587201

    Article  Google Scholar 

  • Du M, Noguchi N (2017) Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote Sens 9(3):289. https://doi.org/10.3390/rs9030289

    Article  Google Scholar 

  • Dube T, Mutanga O (2015) Investigating the robustness of the new Landsat-8 operational land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J Photogrammetry Remote Sens 108:12–32. https://doi.org/10.1016/j.isprsjprs.2015.06.002

    Article  Google Scholar 

  • Eckert S (2012) Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote Sens 4(4):810–829. https://doi.org/10.3390/rs4040810

    Article  Google Scholar 

  • Ehlers D, Wang C, Coulston J, Zhang Y, Pavelsky T, Frankenberg E, Song C (2022) Mapping forest aboveground biomass using multisource remotely sensed data. Remote Sens 14(5):1115. https://doi.org/10.3390/rs14051115

    Article  Google Scholar 

  • El Hage M, Villard L, Huang Y, Ferro-Famil L, Koleck T, Le Toan T, Polidori L (2022) Multicriteria accuracy assessment of digital elevation models (DEMs) produced by airborne P-band polarimetric SAR tomography in tropical rainforests. Remote Sens 14(17):4173. https://doi.org/10.3390/rs14174173

    Article  Google Scholar 

  • Ercanlı İ, Kurt A, Şenyurt M, Günlü A, Bolat F, Keleş S (2018) Tarsus Yöresi Anadolu Karaçamı Ağaçlarında Hacim Tahminlerinin Yapay Sinir Ağları Ile Elde Edilmesi. Anadolu Orman Araştırmaları Dergisi 4(1):25–37

    Google Scholar 

  • Foresee FD, Hagan MT (1997), June Gauss-Newton approximation to Bayesian learning. In Proceedings of international conference on neural networks (ICNN’97) (Vol. 3, pp. 1930–1935). IEEE. https://doi.org/10.1109/ICNN.1997.614194

  • Forkuor G, Dimobe K, Serme I, Tondoh JE (2018) Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens 55(3):331–354. https://doi.org/10.1080/15481603.2017.1370169

    Article  Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143(1):105–117

    Article  CAS  Google Scholar 

  • García-Fernández M, Sanz-Ablanedo E, Rodríguez-Pérez JR (2021) High-resolution drone-acquired RGB imagery to estimate spatial grape quality variability. Agronomy 11(4):655. https://doi.org/10.3390/agronomy11040655

    Article  Google Scholar 

  • Gasparri NI, Parmuchi MG, Bono J, Karszenbaum H, Montenegro CL (2010) Assessing multi-temporal landsat 7 ETM + images for estimating above-ground biomass in subtropical dry forests of Argentina. J Arid Environ 74(10):1262–1270. https://doi.org/10.1016/j.jaridenv.2010.04.007

    Article  Google Scholar 

  • GDF (2020) Sinop Regional Directorate of Forestry, Forest Planing Unit, Forest Management Plans. Republic of Türkiye. General Directorate of Forestry, Forest Management and Planning Department, Ankara

    Google Scholar 

  • Georgopoulos N, Sotiropoulos C, Stefanidou A, Gitas IZ (2022) Struct Terrain Forests 13(12):2157. https://doi.org/10.3390/f13122157. Total Stem Biomass Estimation Using Sentinel-1 and-2 Data in a Dense Coniferous Forest of Complex

  • Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298. https://doi.org/10.1016/S0034-4257(96)00072-7

    Article  Google Scholar 

  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80(1):76–87. https://doi.org/10.1016/S0034-4257(01)00289-9

    Article  Google Scholar 

  • Goel NS, Qin W (1994) Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation. Remote Sens Reviews 10(4):309–347. https://doi.org/10.1080/02757259409532252

    Article  Google Scholar 

  • Günlü A, Ercanli I, Başkent EZ, Çakır G (2014) Estimating aboveground biomass using Landsat TM imagery: A case study of Anatolian Crimean pine forests in Türkiye. Annals For Res 289–298. https://doi.org/10.15287/afr.2014.278

  • Günlü A, Ercanlı İ, Şenyurt M, Keleş S (2021) Estimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Türkiye. Geocarto Int 36(8):918–935. https://doi.org/10.1080/10106049.2019.1629644

    Article  Google Scholar 

  • Günlü A, Keleş S, Ercanli I, Şenyurt M (2021b) Estimation of aboveground stand carbon using landsat 8 OLI satellite image: A case study from Turkey. Spatial modeling in forest resources management: Rural livelihood and sustainable development, 385–403.https://doi.org/10.1007/978-3-030-56542-816

  • Günlü A, Bulut S, Aksoy H, Bolat F, Çapar SC (2024) İnsansız Hava Aracı (İHA) Kullanılarak Saf Sahil Çamı (Pinus pinaster Ait.) Endüstriyel Plantasyonlarında Ağaçların Tepe Çapı ve Boyu ile Göğüs Yüksekliği Çapları Arasında Fonksiyonel İlişkilerin Kurulması ve Bazı Meşcere Parametrelerinin Modellenmesi. (TÜBİTAK-TOVAG Projesi. (Proje No: 123O144), Çankırı Karatekin Üniversitesi Orman Fakültesi, Çankırı.)

  • Güverçin İ, Günlü A (2023) Saf Kızılçam (Pinus brutia Ten.) Meşcerelerinde Aktif ve Pasif Uydu Görüntüleri Kullanılarak Topraküstü Biyokütlenin Tahmin Edilmesi (Anamur Orman İşletme Şefliği Örneği). Bartın Orman Fakültesi Dergisi 25(1):177–191. https://doi.org/10.24011/barofd.1261299

    Article  Google Scholar 

  • Güverçin İ, Günlü A (2023) Saf Kızılçam (Pinus brutia Ten.) Meşcerelerinde Aktif ve Pasif Uydu Görüntüleri Kullanılarak Topraküstü Biyokütlenin Tahmin Edilmesi (Anamur Orman İşletme Şefliği Örneği). Bartın Orman Fakültesi Dergisi 25(1):177–191

    Article  Google Scholar 

  • Hague T, Tillett ND, Wheeler H (2006) Automated crop and weed monitoring in widely spaced cereals. Precision Agric 7:21–32. https://doi.org/10.1007/s11119-005-6787-1

    Article  Google Scholar 

  • Han H, Wan R, Li B (2021) Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: a case study of the Dabie Mountain Region, China. Remote Sens 14(1):176. https://doi.org/10.3390/rs14010176

    Article  Google Scholar 

  • Herold M, Carter S, Avitabile V, Espejo AB, Jonckheere I, Lucas R, De Sy V (2019) The role and need for space-based forest biomass-related measurements in environmental management and policy. Surv Geophys 40:757–778. https://doi.org/10.1007/s10712-019-09510-6

    Article  Google Scholar 

  • Huang H, Liu C, Wang X, Zhou X, Gong P (2019) Remote Sens Environ 221:225–234. https://doi.org/10.1016/j.rse.2018.11.017. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309. https://doi.org/10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Hunt ER Jr, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54. https://doi.org/10.1016/0034-4257(89)90046-1

    Article  Google Scholar 

  • Hunt ER Jr, Doraiswamy PC, McMurtrey JE, Daughtry CS, Perry EM, Akhmedov B (2013) A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Obs Geoinf 21:103–112. https://doi.org/10.1016/j.jag.2012.07.020

    Article  Google Scholar 

  • Issa S, Dahy B, Saleous N, Ksiksi T (2019) Carbon stock assessment of date palm using remote sensing coupled with field-based measurements in Abu Dhabi (United Arab Emirates). Int J Remote Sens 40(19):7561–7580. https://doi.org/10.1080/01431161.2019.1602795

    Article  Google Scholar 

  • Jayathunga S, Owari T, Tsuyuki S (2018) The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest. Int J Appl Earth Obs Geoinf 73:767–777

    Google Scholar 

  • Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833–3845. https://doi.org/10.1016/j.rse.2008.06.006

    Article  Google Scholar 

  • Jiang F, Deng M, Tang J, Fu L, Sun H (2022) Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Carbon Balance Manag 17(1):1–13. https://doi.org/10.1186/s13021-022-00212-y

    Article  Google Scholar 

  • Key CH, Benson NC (2006) Landscape assessment (LA). FIREMON: Fire effects monitoring and inventory system, 164, LA-1

  • Kumar KK, Nagai M, Witayangkurn A, Kritiyutanant K, Nakamura S (2016) Above ground biomass assessment from combined optical and SAR remote sensing data in Surat Thani Province, Thailand. J Geographic Inform Syst 8(04):506. https://doi.org/10.4236/jgis.2016.84042

    Article  Google Scholar 

  • Kumar KK, Nagai M, Witayangkurn A, Kritiyutanant K, Nakamura S (2016) Above ground biomass assessment from combined optical and SAR remote sensing data in Surat Thani Province, Thailand. J Geographic Inform Syst 8(4):506–516. https://doi.org/10.4236/jgis.2016.84042

    Article  Google Scholar 

  • Lan L, Erxue C, Zengyuan L, Qi F, Lei Z (2016) A review on Forest Height and Above\| ground Biomass Estimation based on synthetic aperture radar. Remote Sens Technol Application 31(4):625–633. https://doi.org/10.11873/j.issn.1004-0323.2016.4.0625

    Article  Google Scholar 

  • Lawrence S, Giles CL, Tsoi AC (1997), July Lessons in neural network training: Overfitting may be harder than expected. In Aaai/iaai (pp. 540–545)

  • Li B, Wang W, Bai L, Chen N, Wang W (2019) Estimation of aboveground vegetation biomass based on Landsat-8 OLI satellite images in the Guanzhong Basin, China. Int J Remote Sens 40(10):3927–3947. https://doi.org/10.1080/01431161.2018.1553323

    Article  Google Scholar 

  • Li Y, Li C, Li M, Liu Z (2019) Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests 10:1073. https://doi.org/10.3390/f10121073

    Article  Google Scholar 

  • Li Y, Li M, Li C, Liu Z (2020) Forest aboveground biomass estimation using landsat 8 and Sentinel-1A data with machine learning algorithms. Sci Rep 10(1):9952. https://doi.org/10.1038/s41598-020-67024-3

    Article  CAS  Google Scholar 

  • Li C, Zhou L, Xu W (2021) Estimating aboveground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sens 13(8):1595. https://doi.org/10.3390/rs13081595

    Article  Google Scholar 

  • Lin J, Chen D, Wu W, Liao X (2022) Estimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds. Urban Forestry Urban Green 69:127521. https://doi.org/10.1016/j.ufug.2022.127521

    Article  Google Scholar 

  • Listopad CM, Drake JB, Masters RE, Weishampel JF (2011) Portable and airborne small footprint LiDAR: forest canopy structure estimation of fire managed plots. Remote Sens 3(7):1284–1307. https://doi.org/10.3390/rs3071284

    Article  Google Scholar 

  • Liu HQ, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33(2):457–465

    Article  Google Scholar 

  • Liu Y, Feng H, Yue J, Fan Y, Jin X, Song X, Yang G (2022) Estimation of Potato above-ground Biomass based on Vegetation indices and Green-Edge parameters obtained from UAVs. Remote Sens 14(21):5323

    Article  Google Scholar 

  • López-Serrano PM, López-Sánchez CA, Álvarez-González JG, García-Gutiérrez J (2016) A comparison of machine learning techniques applied to Landsat-5 TM spectral data for biomass estimation. Can J Remote Sens 42(6):690–705. https://doi.org/10.1080/07038992.2016.1217485

    Article  Google Scholar 

  • Louhaichi M, Borman MM, Johnson DE (2001) Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int 16(1):65–70. https://doi.org/10.1080/10106040108542184

    Article  Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using landsat TM data in the Brazilian Amazon. Int J Remote Sens 26(12):2509–2525. https://doi.org/10.1080/01431160500142145

    Article  Google Scholar 

  • Lu D, Chen Q, Wang G, Moran E, Batistella M, Zhang M, Saah D (2012) Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, 2012. https://doi.org/10.1155/2012/436537

  • Maack J, Kattenborn T, Fassnacht FE, Enßle F, Hernandez J, Corvalan P, Koch B (2015) Modeling forest biomass using very-high-resolution data—combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images. Eur J Remote Sens 48(1):245–261. https://doi.org/10.5721/EuJRS20154814

    Article  Google Scholar 

  • Maesano M, Santopuoli G, Moresi FV, Matteucci G, Lasserre B, Mugnozza S (2022) Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy. iForest-Biogeosciences Forestry 15(6):451

    Article  Google Scholar 

  • Mauya EW, Madundo S (2021) Modelling and Mapping Above Ground Biomass Using Sentinel 2 and Planet Scope Remotely Sensed Data in West Usambara Tropical Rainforests, Tanzania. . https://doi.org/10.21203/rs.3.rs-942337/v1

  • McFeeters SK (1996) The use of the normalized difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432. https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  • Moghimi A, Darestani AT, Mostofi N, Fathi M, Amani M (2024) Improving forest above-ground biomass estimation using genetic-based feature selection from Sentinel-1 and Sentinel-2 data (case study of the Noor forest area in Iran). Kuwait J Sci 51(2):100159. https://doi.org/10.1016/j.kjs.2023.11.008

    Article  Google Scholar 

  • Moradi F, Sadeghi SMM, Heidarlou HB, Deljouei A, Boshkar E, Borz SA (2022) Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data. Annals for Res 65(1):165–182. https://doi.org/10.15287/afr.2022.2390

    Article  Google Scholar 

  • Muhe S, Argaw M (2022) Estimation of above-ground biomass in tropical afro-montane forest using Sentinel-2 derived indices. Environ Syst Res 11(1):1–22. https://doi.org/10.1186/s40068-022-00250-y

    Article  Google Scholar 

  • Nasirzadehdizaji R, Balik Sanli F, Abdikan S, Cakir Z, Sekertekin A, Ustuner M (2019) Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Appl Sci 9(4):655. https://doi.org/10.3390/app9040655

    Article  Google Scholar 

  • Nguyen TP, Nguyen PK, Nguyen HN, Tran TD, Pham GT, Le TH, Nguyen VB (2024) Evaluation of statistical and machine learning models using satellite data to estimate aboveground biomass: A study in Vietnam Tropical Forests. For Sci Technol 1–13. https://doi.org/10.1080/21580103.2024.2409211

  • Ni W, Dong J, Sun G, Zhang Z, Pang Y, Tian X, Chen E (2019) Synthesis of leaf-on and leaf-off unmanned aerial vehicle (UAV) stereo imagery for the inventory of aboveground biomass of deciduous forests. Remote Sens 11(7):889. https://doi.org/10.3390/rs11070889

    Article  Google Scholar 

  • Niu Y, Zhang L, Zhang H, Han W, Peng X (2019) Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sens 11(11):1261

    Article  Google Scholar 

  • Nuthammachot N, Askar A, Stratoulias D, Wicaksono P (2022) Geocarto Int 37(2):366–376. https://doi.org/10.1080/10106049.2020.1726507. Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation

  • Okut H (2016) Bayesian regularized neural networks for small n big p data. Artif Neural networks-models Appl. https://doi.org/10.5772/63256

    Article  Google Scholar 

  • Ou G, Li C, Lv Y, Wei A, Xiong H, Xu H, Wang G (2019) Improving aboveground biomass estimation of Pinus densata forests in Yunnan using landsat 8 imagery by incorporating age dummy variable and method comparison. Remote Sens 11(7):738. https://doi.org/10.3390/rs11070738

    Article  Google Scholar 

  • Ouchi K (2013) Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens 5(2):716–807. https://doi.org/10.3390/rs5020716

    Article  Google Scholar 

  • Özdemir G (2018) Karabük Yöresi Kayın-Göknar Karışık Meşcerelerinde Gövde Çaplarının Yapay Sinir Ağları ile Tahmin Edilmesi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği Ana Bilimdalı Yüksek Lisans Tezi, 101 s

  • Persson HJ (2016) Estimation of Boreal forest attributes from very high-resolution pleiades data. Remote Sens 8(9):736. https://doi.org/10.3390/rs8090736

    Article  Google Scholar 

  • Pham TD, Yokoya N, Bui DT, Yoshino K, Friess DA (2019) Remote sensing approaches for monitoring mangrove species, structure, and biomass: opportunities and challenges. Remote Sens 11(3):230. https://doi.org/10.3390/rs11030230

    Article  Google Scholar 

  • Phua MH, Johari SA, Wong OC, Ioki K, Mahali M, Nilus R, Hashim M (2017) Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests. For Ecol Manag 406:163–171. https://doi.org/10.1016/j.foreco.2017.10.007

    Article  Google Scholar 

  • Piotrowski AP, Napiorkowski JJ (2013) A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J Hydrol 476:97–111. https://doi.org/10.1016/j.jhydrol.2012.10.019

    Article  Google Scholar 

  • PIX4D (2022) https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/

  • Poudel KP, Cao QV (2013) Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For Sci 59(2):243–252. https://doi.org/10.5849/forsci.12-001

    Article  Google Scholar 

  • Puliti S, Breidenbach J, Schumacher J, Hauglin M, Klingenberg TF, Astrup R (2021) Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat. Remote sensing of environment, 265, 112644. https://doi.org/10.1016/j.rse.2021.112644

  • Quang NH, Quinn CH, Carrie R, Stringer LC, Hackney CR, Van Tan D (2022) Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the Red River estuaries of Vietnam. Remote Sens Applications: Soc Environ 26:100725. https://doi.org/10.1016/j.rsase.2022.100725

    Article  Google Scholar 

  • Quegan S, Le Toan T, Chave J, Dall J, Exbrayat JF, Minh DHT, Williams M (2019) The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens Environ 227:44–60. https://doi.org/10.1016/j.rse.2019.03.032

    Article  Google Scholar 

  • Ronoud G, Fatehi P, Darvishsefat AA, Tomppo E, Praks J, Schaepman ME (2021) Multi-sensor aboveground biomass estimation in the broadleaved Hyrcanian forest of Iran. Can J Remote Sens 47(6):818–834. https://doi.org/10.1080/07038992.2021.1968811

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ 351(1):309

    Google Scholar 

  • Safari A, Sohrabi H, Powell S, Shataee S (2017) A comparative assessment of multi-temporal landsat 8 and machine learning algorithms for estimating aboveground carbon stock in coppice oak forests. Int J Remote Sens 38(22):6407–6432. https://doi.org/10.1080/01431161.2017.1356488

    Article  Google Scholar 

  • Sakici OE, Gunlu A (2018) Artificial intelligence applications for predicting some stand attributes using Landsat 8 OLI satellite data: A case study from Turkey

  • Santoro M, Cartus O, Carvalhais N, Rozendaal D, Avitabilie V, Araza A, Willcock S (2020) The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst Sci Data Discuss 2020:1–38. https://doi.org/10.5194/essd-13-3927-2021

    Article  Google Scholar 

  • Sarker LR, Nichol JE (2011) Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens Environ 115:968–977. https://doi.org/10.1016/j.rse.2010.11.010

    Article  Google Scholar 

  • Sibanda M, Mutanga O, Rouget M, Kumar L (2017) Estimating biomass of native grass grown under complex management treatments using Worldview-3 spectral derivatives. Remote Sens 9:55. https://doi.org/10.3390/rs9010055

    Article  Google Scholar 

  • Silva CA, Saatchi S, Garcia M, Labriere N, Klauberg C, Ferraz A, Hudak AT (2018) Comparison of small-and large-footprint lidar characterization of tropical forest aboveground structure and biomass: a case study from Central Gabon. IEEE J Sel Top Appl Earth Observations Remote Sens 11(10):3512–3526

    Article  Google Scholar 

  • Sivasankar T, Lone JM, Sarma KK, Qadirº A, Raju PLN (2013) Estimation of above ground biomass using support vector. Vietnam J Earth Sci 41(2):95–104

    Article  Google Scholar 

  • Skudnik M, Jevšenak J (2022) Artificial neural networks as an alternative method to nonlinear mixed-effects models for tree height predictions. For Ecol Manag 507:120017. https://doi.org/10.1016/j.foreco.2022.120017

    Article  Google Scholar 

  • Soja MJ, Persson HJ, Ulander LM (2015) Estimation of forest biomass from two-level model inversion of single-pass InSAR data. IEEE Trans Geosci Remote Sens 53(9):5083–5099

    Article  Google Scholar 

  • Tang J, Liu Y, Li L, Liu Y, Wu Y, Xu H, Ou G (2022) Enhancing Aboveground Biomass Estimation for three Pinus forests in Yunnan, SW China, using landsat 8. Remote Sens 14(18):4589. https://doi.org/10.3390/rs14184589

    Article  Google Scholar 

  • Tao Y, ZHANG YM (2013) Multi-scale biomass estimation of desert shrubs: a case study of Haloxylon Ammodendron in the Gurbantunggut Desert, China. Acta Prataculturae Sinica 22(6):1

    Google Scholar 

  • Thapa RB, Watanabe M, Motohka T, Shimada M (2015) Potential of high-resolution ALOS–PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens Environ 160:122–133. https://doi.org/10.1016/j.rse.2015.01.007

    Article  Google Scholar 

  • Themistocleous K (2019), June DEM modeling using RGB-based vegetation indices from UAV images. In Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019) (Vol. 11174, pp. 499–506). SPIE. https://doi.org/10.1117/12.2532748

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  • Tucker CJ (1980) A spectral method for determining the percentage of green herbage material in clipped samples. Remote Sens Environ 9(2):175–181. https://doi.org/10.1016/0034-4257(80)90007-3

    Article  Google Scholar 

  • Turgut R, Günlü A (2022) Estimating aboveground biomass using landsat 8 satellite image in pure Crimean pine (Pinus nigra JF Arnold subsp. pallasiana (Lamb.) Holmboe) stands: a case from Türkiye. Geocarto Int 37(3):720–734. https://doi.org/10.1080/10106049.2020.1737971

    Article  Google Scholar 

  • Vashum KT, Jayakumar S (2012) Methods to estimate above-ground biomass and carbon stock in natural forests-a review. J Ecosyst Ecography 2(4):1–7. https://doi.org/10.4172/2157-7625.1000116

    Article  CAS  Google Scholar 

  • Wan R, Wang P, Wang X, Yao X, Dai X (2018) Modeling wetland aboveground biomass in the Poyang Lake National Nature Reserve using machine learning algorithms and Landsat-8 imagery. J Appl Remote Sens 12:1–16. https://doi.org/10.1117/1.JRS.12.046029

    Article  Google Scholar 

  • Wang J, Xiao X, Bajgain R, Starks P, Steiner J, Doughty RB, Chang Q (2019) Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J Photogrammetry Remote Sens 154:189–201. https://doi.org/10.1016/j.isprsjprs.2019.06.007

    Article  Google Scholar 

  • Wang D, Wan B, Liu J, Su Y, Guo Q, Qiu P, Wu X (2020) Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery. Int J Appl Earth Obs Geoinf 85:101986. https://doi.org/10.1016/j.jag.2019.101986

    Article  Google Scholar 

  • Wang S, Wang D, Sun JR (2022) Artificial neural network-based ionospheric delay correction method for satellite-based augmentation systems. Remote Sens 14:676

    Article  Google Scholar 

  • Wang Q, Lu X, Zhang H, Yang B, Gong R, Zhang J, Zhao J (2023) Comparison of machine learning methods for estimating Leaf Area Index and Aboveground Biomass of Cinnamomum camphora based on UAV Multispectral Remote Sensing Data. Forests 14(8):1688

    Article  Google Scholar 

  • Wang C, Zhang W, Ji Y, Marino A, Li C, Wang L, Wang M, Forests (2024) 15(1), 215. https://doi.org/10.3390/f15010215

  • Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA (1995) Shape features for identifying young weeds using image analysis. Trans ASAE 38(1):271–281

    Article  Google Scholar 

  • Xu X, Du H, Zhou G, Ge H, Shi Y, Zhou Y, Fan W, Fan W (2011) Estimation of aboveground carbon stock of Moso bamboo (Phyllostachysheterocycla var. Pubescens) forest with a Landsat Thematic Mapper image. Int J Remote Sens 32(5):1431–1448. https://doi.org/10.1080/01431160903551389

    Article  Google Scholar 

  • Xu T, Wang F, Xie L, Yao X, Zheng J, Li J, Chen S (2022) Integrating the textural and spectral information of uav hyperspectral images for the improved estimation of rice aboveground biomass. Remote Sens 14(11):2534

    Article  Google Scholar 

  • Yadav S, Padalia H, Sinha SK, Srinet R, Chauhan P (2021) Above-ground biomass estimation of Indian tropical forests using X band Pol-InSAR and Random Forest. Remote Sens Applications: Soc Environ 21:100462. https://doi.org/10.1016/j.rsase.2020.100462

    Article  Google Scholar 

  • Yavaşli DD, Ölgen MK (2017) Modeling above Ground Biomass in calabrian Pine forests of Düzlerçami (Antalya). Ege Coğrafya Dergisi 26(2):151–161

    Google Scholar 

  • Yavuz H, Mısır N, Tüfekçioğlu A, Altun L, Mısır M, Ercanlı İ, Sakıcı OE, Kahriman A, Karahalil U, Yılmaz M, Sarıyıldız T, Küçük M, Meydan G, Bayburtlu Ş, Bilgili F, Aydın AC, Kara Ö, Bolat İ ve, Usta A 2010. Karadeniz Bölgesi saf ve karışık Sarıçam (Pinus slyvestris L.) meşcereleri için mekanistik büyüme modellerinin geliştirilmesi, biyokütle ve karbon depolama miktarlarının belirlenmesi. (TÜBİTAK-TOVAG Projesi, Proje No: 106O274), Karadeniz Teknik Üniversitesi Orman Fakültesi, Trabzon

  • Ye N, van Leeuwen L, Nyktas P (2019) Analysing the potential of UAV point cloud as input in quantitative structure modelling for assessment of woody biomass of single trees. Int J Appl Earth Obs Geoinf 81:47–57. https://doi.org/10.1016/j.jag.2019.05.010

    Article  Google Scholar 

  • Zarco-Tejada PJ, Berjón A, López-Lozano R, Miller JR, Martín P, Cachorro V, De Frutos A (2005) Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens Environ 99(3):271–287. https://doi.org/10.1016/j.rse.2005.09.002

    Article  Google Scholar 

  • Zhang L, Shao Z, Diao C (2015) Synergistic retrieval model of forest biomass using the integration of optical and microwave remote sensing. J Appl Remote Sens 9(1):096069–096069. https://doi.org/10.1117/1.JRS.9.096069

    Article  Google Scholar 

  • Zhang C, Denka S, Cooper H, Mishra DR (2018) Quantification of sawgrass marsh aboveground biomass in the coastal Everglades using object-based ensemble analysis and landsat data. Remote Sens Environ 204:366–379. https://doi.org/10.1016/j.rse.2017.10.018

    Article  Google Scholar 

  • Zhang C, Huang C, Li H, Liu Q, Li J, Bridhikitti A, Liu G (2020) Effect of Textural features in Remote Sensed Data on Rubber Plantation extraction at different levels of spatial resolution. Forests 11:399. https://doi.org/10.3390/f11040399

    Article  Google Scholar 

  • Zhang W, Zhao L, Li Y, Shi J, Yan M, Ji Y (2022) Forest above-Ground Biomass Inversion Using Optical and SAR images based on a Multi-step Feature Optimized Inversion Model. Remote Sens 14(7):1608. https://doi.org/10.3390/rs14071608

    Article  Google Scholar 

  • Zhang X, Li L, Liu Y, Wu Y, Tang J, Xu W, Ou G (2023) Improving the accuracy of forest aboveground biomass using landsat 8 images by quantile regression neural network for Pinus densata forests in southwestern China. Front Forests Global Change 6:1162291. https://doi.org/10.3389/ffgc.2023.1162291

    Article  Google Scholar 

  • Zhang L, Zhao Y, Chen C, Li X, Mao F, Lv L, Du H (2024) UAV-LiDAR Integration with Sentinel-2 enhances Precision in AGB estimation for bamboo forests. Remote Sens 16(4):705. https://doi.org/10.3390/rs16040705

    Article  Google Scholar 

  • Zhao P, Masoumi Z, Kalantari M, Aflaki M, Mansourian A (2022) A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods. Remote Sens 14(1):211. https://doi.org/10.3390/rs14010211

    Article  Google Scholar 

  • Zheng D, Rademacher J, Chen J, Crow T, Bresee M, Le Moine J, Ryu SR (2004) Estimating aboveground biomass using landsat 7 ETM + data across a managed landscape in northern Wisconsin. USA Remote Sens Environ 93(3):402–411. https://doi.org/10.1016/j.rse.2004.08.008

    Article  Google Scholar 

  • Zhou J, Guo RY, Sun M, Di TT, Wang S, Zhai J, Zhao Z (2017) The effects of GLCM parameters on LAI estimation using texture values from Quickbird Satellite Imagery. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-07951-w

    Article  CAS  Google Scholar 

  • Zhu J, Huang Z, Sun H, Wang G (2017) Mapping forest ecosystem biomass density for Xiangjiang River Basin by combining plot and remote sensing data and comparing spatial extrapolation methods. Remote Sens 9(3):241. https://doi.org/10.3390/rs9030241

    Article  Google Scholar 

Download references

Acknowledgements

This study was produced from a doctoral thesis prepared by Hasan AKSOY and supervised by Prof. Dr. Alkan GÜNLÜ for the Institute of Natural and Applied Science, Çankırı Karatekin University, Türkiye.

Funding

This study was funded by the Scientific Research Project Unit of Cankırı Karatekin University (Grant No: OF211221D08).

Author information

Authors and Affiliations

Authors

Contributions

The writing of the manuscript and creation of the template was carried out by AG, while the generation and analyses of the results were carried out by HA.

Corresponding author

Correspondence to Alkan Günlü.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, H., Günlü, A. UAV and satellite-based prediction of aboveground biomass in scots pine stands: a comparative analysis of regression and neural network approaches. Earth Sci Inform 18, 66 (2025). https://doi.org/10.1007/s12145-024-01657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12145-024-01657-0

Keywords