Skip to main content
Log in

Density based spatial clustering of applications with noise and fuzzy C-means algorithms for unsupervised mineral prospectivity mapping

  • RESEARCH
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Our research focuses on examining two clustering methods, namely Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and fuzzy c-means (FCM) algorithms, to create prospectivity models for Cu mineralization in the Kerman belt, SE Iran. Traditional clustering techniques struggle with computational complexity and adaptability to large datasets, leading to a growing interest in developing improved algorithms. While numerous clustering algorithms have been utilized with promising outcomes, their performance heavily relies on user-specified parameters. The DBSCAN and FCM clustering methods were implemented to reduce the dimensions of nine attribute vectors derived from different exploration criteria. DBSCAN stands out for its ability to detect clusters with diverse shapes, finding applications in image processing, bioinformatics, and social network analysis. In contrast, traditional partitional clustering techniques face challenges in implementing non-convex clustering and may converge to a locally optimal solution. To identify indicators and potential controls on mineralization, we employed various evidence layers such as geochemical signatures, geological-structural clues, geophysical and remote sensing data. To enhance multi-element geochemical signatures in areas with Cu mineralization, we employed multifractal inverse distance weighting interpolation in conjunction with factor analysis. We transformed values of various evidence layers, including geological-structural controls and alterations, using the GIS-based fuzzy membership function MSLarge to fit within a range of 0 to 1. The Xie and Beni (VXB) index has been used in determining the optimal number of clusters for FCM-based MPM. We also utilized normalized density indices for a quantitative evaluation of the DBSCAN and FCM prospectivity maps. The evaluation results confirm the superior reliability of higher favorability classes derived from DBSCAN over those obtained from FCM in the identification of existing mineral deposits and the identification of new potential Cu mineralization zones within the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abedi M, Gholami A, Norouzi G-H, Fathianpour N (2013) Fast inversion of magnetic data using Lanczos bidiagonalization method. J Appl Geophys 90:126–137

    Article  Google Scholar 

  • Aitchison J (1982) The statistical analysis of compositional data. J Roy Stat Soc: Ser B (Methodol) 44(2):139–160

    Article  Google Scholar 

  • Akbari S, Ramazi H, Ghezelbash R, Maghsoudi A (2020) Geoelectrical integrated models for determining the geometry of karstic cavities in the Zarrinabad area, west of Iran: combination of fuzzy logic, CA fractal model and hybrid AHP-TOPSIS procedure. Carbonates Evaporites 35:1–16

    Article  Google Scholar 

  • Akbari S, Ramazi H, Ghezelbash R (2023) Using fractal and multifractal methods to reveal geophysical anomalies in Sardouyeh District, Kerman Iran. Earth Sci Inform 16(3):2125

    Article  Google Scholar 

  • Akbari S, Ramazi H , Ghezelbash R (2025) A novel framework for optimizing the prediction of areas favorable to porphyry-cu mineralization: combination of ant colony and grid search optimization algorithms with support vector machines. Natural Resources Research 1–27

  • Akinlalu AA, Afolabi DO, Sanusi SO (2024) Knowledge-Driven Fuzzy AHP Model for Orogenic Gold Prospecting in a Typical Schist Belt Environment: A Mineral System Approach. Earth Syst Environ 8(2):221–263

    Article  Google Scholar 

  • Altobi MAS, Bevan G, Wallace P, Harrison D, Ramachandran K (2019) Fault diagnosis of a centrifugal pump using MLP-GABP and SVM with CWT. Eng Sci Technol Int J 22(3):854–861

    Google Scholar 

  • Ansari A, Alamdar K (2009) Reduction to the pole of magnetic anomalies using analytic signal. World Appl Sci J 7(4):405–409

    Google Scholar 

  • Aranha M, Porwal A, González-Álvarez I (2024) Unsupervised machine learning-based prospectivity analysis of NW and NE India for carbonatite-alkaline complex-related REE deposits. Geochemistry. 84(2):126017

    Article  CAS  Google Scholar 

  • Beiranvand Pour A, Park T-YS, Park Y, Hong JK, Zoheir B, Pradhan B, Ayoobi I, Hashim M (2018) Application of multi-sensor satellite data for exploration of Zn–Pb sulfide mineralization in the Franklinian Basin. North Greenland Remote Sensing 10(8):1186

    Article  Google Scholar 

  • Bezdek JC, Coray C, Gunderson R, Watson J (1981) Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines. SIAM J Appl Mathemat 40(2):339–357

    Article  Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  • Bezdek, J. C. (1973). Fuzzy-Mathematics In Pattern Classification. Cornell University.

  • Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Integration of geological datasets for gold exploration in Nova Scotia. Digit Geol Geogr Inform Syst 10:15–23

    Google Scholar 

  • Braune C, Besecke S, & Kruse R (2015). Density based clustering: alternatives to DBSCAN. Partition Clust Algorit 193–213.

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier

    Google Scholar 

  • Carranza EJM, Hale M (2001) Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Nat Resour Res 10:125–136

    Article  CAS  Google Scholar 

  • Carranza EJM, Maseko RN (2024) Regional-to district-scale controls on thermal springs occurrence in South Africa: Insights from investigations of their spatial distribution and their spatial relationships with geological features. Geothermics 117:102866

    Article  Google Scholar 

  • Chawla NV, Japkowicz N, Kotcz A (2004) Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsl 6(1):1–6

    Article  Google Scholar 

  • Chen Y, Wu W (2017) Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data. Aust J Earth Sci 64(5):639–651

    Article  CAS  Google Scholar 

  • Chen Y, Wu W, Zhao Q (2019) A bat-optimized one-class support vector machine for mineral prospectivity mapping. Minerals 9(5):317

    Article  Google Scholar 

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province China. Ore Geol Rev 32(1–2):314–324

    Article  Google Scholar 

  • Chowdhury N, Bhattacharjee P (2014) Using an MST-based Value for ε in DBSCAN Algorithm for Obtaining Better Result. Int J Inform Technol Comput Sci 6:55–60

    Google Scholar 

  • Clare AP, Cohen DR (2001) A comparison of unsupervised neural networks and k-means clustering in the analysis of multi-element stream sediment data. Geochemi Explorat, Environ Anal 1(2):119–134

    Article  CAS  Google Scholar 

  • Clark DA (1999) Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation. Explor Geophys 30(2):5–26

    Article  Google Scholar 

  • Daviran M, Maghsoudi A, Cohen DR, Ghezelbash R, Yilmaz H (2020) Assessment of various fuzzy c-mean clustering validation indices for mapping mineral prospectivity: combination of multifractal geochemical model and mineralization processes. Nat Resour Res 29:229–246

    Article  CAS  Google Scholar 

  • Daviran M, Maghsoudi A, Ghezelbash R, Pradhan B (2021) A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Comput Geosci 148:104688

    Article  CAS  Google Scholar 

  • Daviran M, Parsa M, Maghsoudi A, Ghezelbash R (2022) Quantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mapping. Nat Resour Res 31(5):2271–2287

    Article  Google Scholar 

  • Daviran M, Ghezelbash R, Niknezhad M, Maghsoudi A, Ghaeminejad H (2023) Hybridizing K-means clustering algorithm with harmony search and artificial bee colony optimizers for intelligence mineral prospectivity mapping. Earth Sci Inform 16(3):2143–65

    Article  Google Scholar 

  • Daviran M, Shamekhi M, Ghezelbash R, Maghsoudi A (2023c) Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm. Int J Environ Sci Technol 20(1):259–276

    Article  CAS  Google Scholar 

  • Daviran M, Ghezelbash R, Maghsoudi A (2024) GWOKM: A novel hybrid optimization algorithm for geochemical anomaly detection based on Grey wolf optimizer and K-means clustering. Geochemistry. 84(1):126036

    Article  CAS  Google Scholar 

  • Daviran M, Maghsoudi A, Ghezelbash R (2025a) Optimized AI-MPM: application of PSO for tuning the hyperparameters of SVM and RF algorithms. Comput Geosci 195:105785

    Article  Google Scholar 

  • Daviran M, Ghezelbash R, Hajihosseinlou M, Maghsoudi A (2025b) Uncertainty quantification in genetic algorithm-optimized artificial intelligence-based mineral prospectivity models: automated hyperparameter tuning for support vector machines and random forest. Modeling Earth Systems and Environment 11(1):1–23

    Article  Google Scholar 

  • Dean WC (1958) Frequency analysis for gravity and magnetic interpretation. Geophysics 23(1):97–127

    Article  Google Scholar 

  • Demir N, Kaynarca M, Oy S (2016) Extraction of coastlines with fuzzy approach using SENTINEL-1 SAR image. Int Arch Photogramm Remote Sens Spat Inf Sci 41:747–751

    Article  Google Scholar 

  • Ester M, Kriegel HP, Sander J, & Xu X (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226–231).

  • Ester, M. (2018). Density-based clustering. Data Clustering, 111–127.

  • Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers. Environ : Off J Int Environmet Soc 20(6):621–632

    Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2010) The bivariate statistical analysis of environmental (compositional) data. Sci Total Environ 408(19):4230–4238

    Article  CAS  Google Scholar 

  • Ghezelbash R, Maghsoudi A (2018) A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran. Arab J Geosci 11:1–15

    Article  CAS  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Carranza EJM (2019a) An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: adaption of prediction–area plot and logistic functions. Nat Resour Res 28:1299–1316

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Carranza EJM (2019b) Mapping of single-and multi-element geochemical indicators based on catchment basin analysis: Application of fractal method and unsupervised clustering models. J Geochem Explor 199:90–104

    Article  CAS  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Carranza EJM (2019c) Performance evaluation of RBF-and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of SA multifractal model and mineralization controls. Earth Sci Inf 12:277–293

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Daviran M (2019d) Prospectivity modeling of porphyry copper deposits: recognition of efficient mono-and multi-element geochemical signatures in the Varzaghan district, NW Iran. Acta Geochimica 38:131–144

    Article  CAS  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Daviran M (2019f) Implementation of Fuzzy-AHP and Fuzzy-GAMMA approaches for discovering the prospectivity areas of Au mineralization in Takhte-Soleyman district. Researches in Earth Sciences 10(1):143–162

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Daviran M, Yilmaz H (2019e) Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district NW Iran. Geochemistry 79(2):323–336

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Carranza EJM (2020) Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Comput Geosci 134:104335

    Article  CAS  Google Scholar 

  • Ghezelbash R, Daviran M, Maghsoudi A, Ghaeminejad H, Niknezhad M (2023a) Incorporating the genetic and firefly optimization algorithms into K-means clustering method for detection of porphyry and skarn Cu-related geochemical footprints in Baft district, Kerman Iran. Appl Geochem 148:105538

    Article  CAS  Google Scholar 

  • Ghezelbash R, Maghsoudi A, Shamekhi M, Pradhan B, Daviran M (2023b) Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity. Neural Comput Appl 35(1):719–733

    Article  Google Scholar 

  • Gonzalez-Alvarez I, Goncalves MA, Carranza EJM (2020) Introduction to the special issue challenges for mineral exploration in the 21st century: Targeting mineral deposits under cover. Ore Geol Rev 126:103785

    Article  Google Scholar 

  • Guo Y, Zhang S, Fu C, & Yang Y (2023). GIS-based mineral prospectivity mapping: a systematic study on machine learning at Hezuo-Meiwu District, Gansu Province. In International Conference on Geographic Information and Remote Sensing Technology (GIRST 2022) (Vol. 12552, pp. 889–897). SPIE.

  • Hajaj S, El Harti A, Jellouli A, Pour AB, Himyari SM, Hamzaoui A, Hashim M (2024a) ASTER data processing and fusion for alteration minerals and silicification detection: Implications for cupriferous mineralization exploration in the western Anti-Atlas. Morocco Artificial Intelligence in Geosciences 5:100077

    Article  Google Scholar 

  • Hajaj S, El Harti A, Jellouli A, Pour AB, Himyari SM, Hamzaoui A, Bensalah MK, Benaouiss N, Hashim M (2024b) HyMap imagery for copper and manganese prospecting in the east of Ameln valley shear zone (Kerdous inlier, western Anti-Atlas, Morocco). J Spat Sci 69(1):81–102

    Article  Google Scholar 

  • Hajaj S, El Harti A, Pour AB, Jellouli A, Adiri Z, Hashim M (2024c) A review on hyperspectral imagery application for lithological mapping and mineral prospecting: Machine learning techniques and future prospects. Society and Environment, Remote Sensing Applications, p 101218

    Google Scholar 

  • Hajihosseinlou M, Maghsoudi A, Ghezelbash R (2023) A Novel Scheme for Mapping of MVT-Type Pb–Zn Prospectivity: LightGBM, a Highly Efficient Gradient Boosting Decision Tree Machine Learning Algorithm. Nat Resour Res 32(6):2417–38

    Article  CAS  Google Scholar 

  • Hajihosseinlou M, Maghsoudi A, Ghezelbash R (2024) A comprehensive evaluation of OPTICS, GMM and K-means clustering methodologies for geochemical anomaly detection connected with sample catchment basins. Geochemistry 23:126094

    Article  Google Scholar 

  • Hajihosseinlou M, Maghsoudi A, Ghezelbash R (2024) Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran. Exp Syst Appl 237:121668

    Article  Google Scholar 

  • Hernández Pardo O, Gretta C, Pintor B (2012) Geophysical exploration of disseminated and stockwork deposits associated with plutonic intrusive rock: a case study on the eastern flank of Colombia’s western cordillera. Earth Sci Res J 16(1):11–23

    Google Scholar 

  • Hezarkhani A, Williams-Jones AE (1998) Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes. Econ Geol 93(5):651–670

    Article  CAS  Google Scholar 

  • Huang D, Zuo R, Wang J (2022) Geochemical anomaly identification and uncertainty quantification using a Bayesian convolutional neural network model. Appl Geochem 146:105450

    Article  CAS  Google Scholar 

  • Khalifani FM, Bahroudi A, Aliyari F, Abedi M, Yousefi M, Mohammadpour M (2019) Generation of an efficient structural evidence layer for mineral exploration targeting. J Afr Earth Sc 160:103609

    Article  Google Scholar 

  • Kriegel HP, Kröger P, Sander J, Zimek A (2011) Density-based clustering. Wiley Interdiscip Rev Data Min Knowledge Discov 1(3):231–240

    Article  Google Scholar 

  • Lachaud A, Adam M, Mišković I (2023) Comparative Study of Random Forest and Support Vector Machine Algorithms in Mineral Prospectivity Mapping with Limited Training Data. Minerals 13(8):1073

    Article  CAS  Google Scholar 

  • Li B, Yu Z, Ke X (2023) One-dimensional Convolutional Neural Network for Mapping Mineral Prospectivity: A Case Study in Changba Ore Concentration Area Gansu Province. Ore Geol Rev 26:105573

    Article  Google Scholar 

  • Liu H, Harris J, Sherlock R, Behnia P, Grunsky E, Naghizadeh M, Rubingh K, Tuba G, Roots E, Hill G (2023) Mineral prospectivity mapping using machine learning techniques for gold exploration in the Larder Lake area, Ontario Canada. J Geochem Explorat 253:107279

    Article  CAS  Google Scholar 

  • Mihalasky MJ, Bonham-Carter GF (2001) Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Nat Resour Res 10:209–226

    Article  CAS  Google Scholar 

  • Mirzabozorg SAAS, Abedi M (2023) Recognition of mineralization-related anomaly patterns through an autoencoder neural network for mineral exploration targeting. Appl Geochem 158:105807

    Article  CAS  Google Scholar 

  • Mirzaie A, Bafti SS, Derakhshani R (2015) Fault control on Cu mineralization in the Kerman porphyry copper belt, SE Iran: A fractal analysis. Ore Geol Rev 71:237–247

    Article  Google Scholar 

  • Moghadam MC, Tahmasbi Z, Ahmadi-Khalaji A, Santos JF (2018) Petrogenesis of Rabor-Lalehzar magmatic rocks (SE Iran): Constraints from whole rock chemistry and Sr-Nd isotopes. Geochemistry 78(1):58–77

    Article  CAS  Google Scholar 

  • Mohamed Taha AM, Liu G, Chen Q, Fan W, Cui Z, Wu X, Fang H (2024) Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model. Nat Resour Res 23:1–25

    Google Scholar 

  • Moreira A, Santos MY, Carneiro S (2005) Density-based clustering algorithms–DBSCAN and SNN. University of Minho-Portugal 1:18

    Google Scholar 

  • Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37(3):507–517

    Article  Google Scholar 

  • Nasseri A (2021). Geochemical Pattern Recognition for Cu-Au Deposit Based on Self-Organizing Map (SOM) and Fuzzy K-means Clustering (FKMC) in Meshginshahr, NW of Iran. J Artif Intel Elect Eng 10(38).

  • Niktabar S, Moradian A, Ahmadipour H, Santos J, Mendes M (2015) Petrogenesis of the Lalezar granitoid intrusions (Kerman Province-Iran). J Sci Islam Repub Iran 26(4):333–348

    Google Scholar 

  • Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(3):370–379

    Article  Google Scholar 

  • Pazand K, Hezarkhani A, Ataei M (2012) Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar-Arasbaran area (NW, Iran). Comput Geosci 49:62–71

    Article  CAS  Google Scholar 

  • Pirajno F (2010) Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). J Geodyn 50(3–4):325–346

    Article  Google Scholar 

  • Porwal A, Carranza E, Hale M (2003) Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India. Nat Resour Res 12:155–171

    Article  CAS  Google Scholar 

  • Pour AB, Hashim M (2011) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42(6):1309–1323

    Article  Google Scholar 

  • Pour AB, Hashim M, Hong JK, Park Y (2019) Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol Rev 108:112–133

    Article  Google Scholar 

  • Pour AB, Ranjbar H, Sekandari M, Abd El-Wahed M, Hossain MS, Hashim M, Yousefi M, Zoheir B, Wambo JDT, & Muslim AM (2023). Remote sensing for mineral exploration. In Geospatial Analysis Applied to Mineral Exploration (pp. 17–149). Elsevier.

  • Qin Y, Liu L, Wu W (2021) Machine learning-based 3D modeling of mineral prospectivity mapping in the Anqing Orefield Eastern China. Nat Resour Res 30(5):3099–3120

    Article  Google Scholar 

  • Rahimi E, Maghsoudi A, Hezarkhani A (2016) Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district. J Afr Earth Sc 124:139–150

    Article  CAS  Google Scholar 

  • Rahimi E, Shekarian Y, Farahani SM, Asgari GR, Nakini A (2020) New approach in application of the AHP–fuzzy TOPSIS method in mineral potential mapping of the natural bitumen (Gilsonite): a case study from the Gilan-e-Gharb block, the Kermanshah, west of Iran. Am J Eng Appl Sci 13(1):96–110

    Article  Google Scholar 

  • Ranjbar H, Masoumi F, Carranza E (2011) Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area Iran. Int J Remote Sens 32(12):3309–3327

    Article  Google Scholar 

  • Rezaee MR, Lelieveldt BP, Reiber JH (1998) A new cluster validity index for the fuzzy c-mean. Pattern Recogn Lett 19(3–4):237–246

    Article  Google Scholar 

  • Riahi S, Abedi M, Bahroudi A (2023) A Hybrid Fuzzy Ordered Weighted Averaging Method in Mineral Prospectivity Mapping: a case for Porphyry Cu Exploration in Chahargonbad District Iran. Int J Min Geo-Eng 57(4):373–380

    Google Scholar 

  • Roshanravan B, Kreuzer OP, Buckingham A, Keykhay-Hosseinpoor M, Keys E (2023) Mineral potential modelling of orogenic gold systems in the granites-tanami Orogen, Northern Territory, Australia: A multi-technique approach. Ore Geol Rev 152:105224

    Article  Google Scholar 

  • Sadigh S, Mirmohammadi M, Asghari O, Porwal A (2023) Spatial distribution of porphyry copper deposits in Kerman Belt Iran. Ore Geol Rev 153:105251

    Article  Google Scholar 

  • Sander J, Ester M, Kriegel H-P, Xu X (1998) Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Min Knowl Disc 2:169–194

    Article  Google Scholar 

  • Sekandari M, & Beiranvand Pour A (2021). Fuzzy Logic Modeling for Integrating the Thematic Layers Derived from Remote Sensing Imagery: A Mineral Exploration Technique. Environ Sci Proc 6(1).

  • Senanayake IP, Kiem AS, Hancock GR, Metelka V, Folkes CB, Blevin PL, Budd AR (2023) A spatial data-driven approach for mineral prospectivity mapping. Remote Sensing 15(16):4074

    Article  Google Scholar 

  • Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Deposita 44:265–283

    Article  CAS  Google Scholar 

  • Shi Z, Zuo R, Zhou B (2023) Deep Reinforcement Learning for Mineral Prospectivity Mapping. Mathemat Geosci 55(6):773–797

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41

    Article  CAS  Google Scholar 

  • Sivarathri S, Govardhan A (2014) Experiments on hypothesis" fuzzy k-means is better than k-means for clustering. Int J Data Min Knowl Manag Proc 4(5):21

    Google Scholar 

  • Tahmasebi P, Hezarkhani A (2010) Application of adaptive neuro-fuzzy inference system for grade estimation; case study, Sarcheshmeh porphyry copper deposit, Kerman Iran. Aust J Basic Appl Sci 4(3):408–420

    CAS  Google Scholar 

  • Tangestani M, Moore F (2001) Comparison of three principal component analysis techniques to porphyry copper alteration mapping: a case study, Meiduk area, Kerman Iran. Canad J Remote Sens 27(2):176–182

    Article  Google Scholar 

  • Wang Z, Zuo R, Yang F (2023) Geological mapping using direct sampling and a convolutional neural network based on geochemical survey data. Math Geosci 55(7):1035–1058

    Article  CAS  Google Scholar 

  • Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(08):841–847

    Article  Google Scholar 

  • Yang F, Zuo R, Xiong Y, Wang J, Zhang G (2023) An interpretable attention branch convolutional neural network for identifying geochemical anomalies related to mineralization. J Geochem Explor 252:107274

    Article  CAS  Google Scholar 

  • Yin B, Zuo R, Sun S (2023) Mineral prospectivity mapping using deep self-attention model. Nat Resour Res 32(1):37–56

    Article  Google Scholar 

  • Yu L, Porwal A, Holden E-J, Dentith MC (2012) Towards automatic lithological classification from remote sensing data using support vector machines. Comput Geosci 45:229–239

    Article  Google Scholar 

  • Zhang S, Carranza EJM, Xiao K, Wei H, Yang F, Chen Z, Li N, Xiang J (2022) Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers. Nat Resour Res 31(4):1981–1999

    Article  Google Scholar 

  • Zhang Z, Li Y, Wang G, Carranza EJ, Yang S, Sha D, Fan J, Zhang X, Dong Y (2023) Supervised Mineral Prospectivity Mapping via Class-Balanced Focal Loss Function on Imbalanced Geoscience Datasets. Mathemat Geosci 55(7):989–1010

    Article  Google Scholar 

  • Zhang C, & Zuo R (2024). Incorporating Geological Knowledge into Deep Learning to Enhance Geochemical Anomaly Identification Related to Mineralization and Interpretability. Mathemat Geosci 1–22.

  • Zhang C, & Zuo R (2024). Incorporating geological knowledge into deep learning to enhance geochemical anomaly identification related to mineralization and interpretability. Mathemat Geosci 1–22.

  • Zuo R, Carranza EJM (2023) Machine learning-based mapping for mineral exploration. Math Geosci 55(7):891–895

    Article  Google Scholar 

  • Zuo R, Wang J (2016) Fractal/multifractal modeling of geochemical data: A review. J Geochem Explor 164:33–41

    Article  CAS  Google Scholar 

  • Zuo R, Xu Y (2023) Graph deep learning model for mapping mineral prospectivity. Math Geosci 55(1):1–21

    Article  Google Scholar 

  • Zuo R, Cheng Q, Agterberg F, Xia Q (2009) Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochem Explor 101(3):225–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Babaie, the Editor-in-chief, for handling this manuscript. Moreover, we want to thank the Geological Survey of Iran (GSI) for providing the geospatial database used in this paper.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Reza Ghezelbash: Methodology, Software, Formal analysis, Data curation, Writing – review & editing, Visualization. Mehrdad Daviran: Methodology, Software, Formal analysis, Data curation, Writing – original draft, Visualization. Abbas Maghsoudi: Resources, Supervision. Mahsa Hajihosseinlou: Writing – original draft.

Corresponding authors

Correspondence to Reza Ghezelbash or Abbas Maghsoudi.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Communicated by Hassan Babaie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelbash, R., Daviran, M., Maghsoudi, A. et al. Density based spatial clustering of applications with noise and fuzzy C-means algorithms for unsupervised mineral prospectivity mapping. Earth Sci Inform 18, 217 (2025). https://doi.org/10.1007/s12145-025-01708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12145-025-01708-0

Keywords