Abstract
This study employed random forest (RF) and support vector machine (SVM) algorithms to estimate actual evapotranspiration (ETa) using data from Sentinel-2 and Sentinel-3 satellites. The primary objective was to propose efficient methodologies that rely on minimal input features while identifying crucial variables that influence ETa across various climates. Initially, ETa was computed for five distinct climatic regions in Iran using the two-source energy balance model_Priestley Taylor (TSEB_PT), and these results were utilized to calibrate the machine learning models. The findings revealed that the RF algorithm demonstrated superior performance in dry, Mediterranean, and humid regions, whereas the SVM algorithm was more accurate in semi-arid and very humid climates. The RF model identified land surface temperature (LST) and leaf area index (LAI) as the most important predictors. In contrast, the SVM model highlighted the significance of the soil-adjusted vegetation index (SAVI) and LAI. Additional influential variables included photosynthetically active radiation (PAR), elevation, normalized difference vegetation index (NDVI), and blue and red-edge spectral bands. Overall, LST emerged as the most impactful variable across all studied climates. Due to their simpler computations, reduced data requirements, and faster processing times, machine learning methods offer a viable alternative for predicting ETa.






Similar content being viewed by others
Data availability
Data available on request.
References
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop ET-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, vol 300. Fao, Rome, p D05109
Allen RG, Tasumi M, Trezza R (2007) Satellite-Based Energy Balance for Mapping ET with Internalized Calibration (METRIC)—Model. J Irrig Drain Eng 133:380–394. https://doi.org/10.1061/(ASCE)0733-9437
Allen RG, Pereira LS, Howell TA, Jensen ME (2011) ET information reporting: I. factors governing measurement accuracy. Agric Water Manag 98:899–920. https://doi.org/10.1016/j.agwat.2010.12.015
Alton PB (2016) The sensitivity of models of gross primary productivity to meteorological and leaf area forcing: a comparison between a Penman–Monteith ecophysiological approach and the MODIS Light-Use Efficiency algorithm. Agric Meteorol 218:11–24. https://doi.org/10.1016/j.agrformet.2015.11.010
Amani SH, Shafizadeh-Moghadam H (2023) A review of ML models and influential factors for estimating ET using remote sensing and ground-based data. Agric Water Manag 284:108324. https://doi.org/10.1016/j.agwat.2023.108324
Anderson MC, Norman JM, Diak GR, Kustas WP, Mecikalski JR (1997) A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ 60:195–216. https://doi.org/10.1016/S0034-4257(96)00215-5
Atzberger C, Richter K (2012) Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens Environ 120:208–218. https://doi.org/10.1016/j.rse.2011.10.035
Bai Y, Zhang, Bhattarai N, Mallick K, Liu Q, Tang L, Im J, Guo L, Zhang J (2021) On the use of ML based ensemble approaches to improve ET estimates from croplands across a wide environmental gradient. Agric Meteorol 298–299. https://doi.org/10.1016/j.agrformet.2020.108308
Ball JT, Woodrow IE, Berry JA (1987) A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In: BIGGINS, J. (ed.) Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, August 10–15, 1986. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-0519-6_48
Bastiaanssen WG, Menenti M, Feddes RA, Holtslag AA (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 212(1):198–212. https://doi.org/10.1016/S0022-1694(98)00253-4
Bauer P, Dueben PD, Hoefler T, Quintino T, Schulthess TC, Wedi NP (2021) The digital revolution of Earth-system science. Nat Comput Sci 1(2):104–113. https://doi.org/10.1038/s43588-021-00023-0
Bhushan S, Shean D, Alexandrov O, Henderson S (2021) Automated digital elevation model (DEM) generation from very-high-resolution Planet SkySat triplet stereo and video imagery. ISPRS J Photogramm Remote Sens 173:151–165. https://doi.org/10.1016/j.isprsjprs.2020.12.012
Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167. https://doi.org/10.1023/A:1009715923555
Carter C, Liang S (2019) Evaluation of ten ML methods for estimating terrestrial ET from remote sensing. Int J Appl Earth Obs Geoinf 78:86–92. https://doi.org/10.1016/j.jag.2019.01.020
Chen JM, Liu J (2020) Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens Environ 237:111594. https://doi.org/10.1016/j.rse.2019.111594
Cleugh HA, Leuning R, Mu Q, Running SW (2007) Regional evaporation estimates from flux tower and MODIS satellite data.Remote sens. Environ 106:285–304. https://doi.org/10.1016/j.rse.2006.07.007
Colaizzi PD, Kustas WP, Anderson MC, Agam N, Tolk JA, Evett SR, Howell TA, Gowda PH, O’Shaughnessy SA (2012) Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Adv Water Resour 50:134–151
Cui Y, Song L, Fan W (2021) Generation of spatio-temporally continuous ET and its components by coupling a two-source energy balance model and a deep neural network over the Heihe River Basin. J Hydrol 597:126176. https://doi.org/10.1016/j.jhydrol.2021.126176
Dias SHB, Filgueiras R, Fernandes Filho EI, Arcanjo GS, Silva GHd, Mantovani EC, Cunha FFD (2021) Reference ET of Brazil modeled with ML techniques and remote sensing. PLoS ONE 16:e0245834. https://doi.org/10.1371/journal.pone.0245834
Douna V, Barraza V, Grings F, Huete A, Restrepo-Coupe N, Beringer J (2021) Towards a remote sensing data based ET estimation in Northern Australia using a simple random forest approach. J Arid Environ 191:104513. https://doi.org/10.1016/j.jaridenv.2021.104513
Fathi-Taperasht A, Shafizadeh-Moghadam H, Kouchakzadeh M (2022) MODIS-based evaluation of agricultural drought, water use efficiency and post-drought in Iran; considering the influence of heterogeneous climatic regions. J Clean Prod 2022(374):133836. https://doi.org/10.1016/j.jclepro.2022.133836
Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112:901–919. https://doi.org/10.1016/j.rse.2007.06.025
Gao F, Kustas WP, Anderson MC (2012) A data mining approach for sharpening thermal satellite imagery over land. Remote Sens 4(11):3287–319. https://doi.org/10.3390/rs4113287
Goward SN, Cruickshanks GD, Hope AS (1985) Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sens Environ 18:137–146. https://doi.org/10.1016/0034-4257(85)90044-6
Guzinski R, Nieto H (2019) Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution ET estimations. Remote Sens Environ 221:157–172. https://doi.org/10.1016/j.rse.2018.11.019
Guzinski R, Nieto H, Jensen R, Mendiguren G (2014) Remotely sensed land-surface energy fluxes at sub-field scale in heterogeneous agricultural landscape and coniferous plantation. Biogeosciences 11:5021–5046. https://doi.org/10.5194/bg-11-5021-2014
Guzinski R, Nieto H, El-Madany T, Migliavacca M, Carrara A (2018) Validation of fine Resolution Land-Surface Energy fluxes Derived with Combined Sentinel-2 and Sentinel-3 observations. IGARSS, pp 22–27. https://doi.org/10.1109/IGARSS.2018.8518229
Guzinski R, Nieto H, Sánchez JM, López-Urrea R, Boujnah DM, Boulet G (2021) Utility of Copernicus-based inputs for actual ET modeling in support of Sustainable Water Use in Agriculture. IEEE J Sel Top Appl Earth Obs 14:11466–11484. https://doi.org/10.1109/JSTARS.2021.3122573
Hao P, Di L, Yu E, Guo L, Sun Z, Zhao H, Meteorological Data (2021) Using ML and trapezoidal model to derive All-weather ET from Remote sensing Images and. 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 1–4. https://doi.org/10.1109/Agro-Geoinformatics50104.2021.9530341
Hao P, Di L, Guo L (2022) Estimation of crop ET from MODIS data by combining random forest and trapezoidal models. Agric Water Manag 259:107249. https://doi.org/10.1016/j.agwat.2021.107249
Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer ISBN. https://doi.org/10.1111/j.1467-985X.2010.00646_6.x. 978-0-387-84857-0
Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE ISWA 13(4):18–28. https://doi.org/10.1109/5254.708428
Hu X, Shi L, Lin G, Lin L (2021) Comparison of physical-based, data-driven and hybrid modeling approaches for ET estimation. J Hydrol 601:126592. https://doi.org/10.1016/j.jhydrol.2021.126592
Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309. https://doi.org/10.1016/0034-4257(88)90106-X
Jang JC, Sohn EH, Park KH, Lee S (2021) Estimation of daily potential ET in Real-Time from GK2A/AMI Data using Artificial neural network for the Korean Peninsula. J Hydrol 8:129. https://doi.org/10.3390/hydrology8030129
Jung M, Reichstein M, Bondeau A (2009) Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6(10):2001–2013. https://doi.org/10.5194/bg-6-2001-2009
Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, De Jeu R, Dolman AJ (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954. https://doi.org/10.1038/nature09396
Kaheil YH, Rosero E, Gill MK, McKee M, Bastidas LA (2008) Downscaling and forecasting of ET using a synthetic model of wavelets and Support Vector machines. IEEE Trans Geosci Remote Sens 46:2692–2707. https://doi.org/10.1109/TGRS.2008.919819
Ke Y, Im J, Park S, Gong H (2016) Downscaling of MODIS one kilometer ET using Landsat-8 data and ML approaches. Remote Sens 8:215. https://doi.org/10.3390/rs8030215
Khanal R, Dhungel S, Brewer SC, Barber ME, Atmosphere (2021) Barber ME Statistical Modeling to Predict Climate Change Effects on Watershed Scale ET. Atmosphere 12:1565. https://doi.org/10.3390/atmos12121565
Kustas WP, Norman JM (1999) Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric Meteorol 94:13–29. https://doi.org/10.1016/S0168-1923(99)00005-2
Kustas WP, Norman JM (2000) A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. J Agron 92:847–854. https://doi.org/10.2134/agronj2000.925847x
Li ZL, Tang BH, Wu H, Ren H, Yan G, Wan Z, Sobrino JA (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37. https://doi.org/10.1016/j.rse.2012.12.008
Liu Y, Hiyama T, Yamaguchi Y (2006) Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens Environ 105(2):115–128. https://doi.org/10.1016/j.rse.2006.06.012
Liu M, Tang RL, Li ZL, Yao Y, Yan G (2017) Global land surface ET estimation from MERRA dataset and MODIS product using the support vector machine. IEEE IGARSS 4851–4854. https://doi.org/10.1109/IGARSS.2017.8128089
Liu M, Tang R, Li ZL, Yao Y, Yan G (2018) Global Land Surface ET Estimation from Meteorological and Satellite Data using the support Vector Machine and Semiempirical Algorithm. IEEE JSTARS 11:513–521. https://doi.org/10.1109/JSTARS.2017.2788462
Liu Y, Yue Q, Wang Q, Yu J, Zheng Y, Yao X, Xu S (2021a) A Framework for actual Evapotranspiration Assessment and Projection based on Meteorological, Vegetation and Hydrological Remote Sensing products. Remote Sens 13:3643. https://doi.org/10.3390/rs13183643
Liu Y, Zhang S, Zhang J, Tang L, Bai Y (2021b) Assessment and comparison of six machine learning models in estimating evapotranspiration over croplands using Remote Sensing and Meteorological factors. Remote Sens 13. https://doi.org/10.3390/rs13193838
Liu Y, Zhang S, Zhang J, Tang L, Bai Y (2021c) Using Artificial neural network Algorithm and Remote sensing Vegetation Index improves the Accuracy of the Penman-Monteith equation to Estimate Cropland ET. Appl Sci 11:8649. https://doi.org/10.3390/app11188649
Liu Y, Jiang Q, Wang Q, Jin Y, Yue Q, Yu J, Zheng Y, Jiang W, Yao X (2022) The divergence between potential and actual evapotranspiration: an insight from climate, water, and vegetation change. Sci Total Environ 807:150648. https://doi.org/10.1016/j.scitotenv.2021.150648
Long D, Singh VP (2012) A two-source trapezoid model for ET (TTME) from satellite imagery. Remote Sens Environ 121:370–388. https://doi.org/10.1016/j.rse.2012.02.015
McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432. https://doi.org/10.1080/01431169608948714
Miralles DG, De Jeu RAM, Gash JH, Holmes TRH, Dolman AJ (2011) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:967–981. https://doi.org/10.5194/hess-15-967-2011
Moran MS, Rahman AF, Washburne JC, Goodrich DC, Weltz MA, Kustas WP (1996) Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agric Meteorol 80:87–109. https://doi.org/10.1016/0168-1923(95)02292-9
Mosre J, Suárez F (2021) Actual evapotranspiration estimates in Arid Cold regions using machine learning algorithms with in situ and remote Sensing Data. Water 13:870. https://doi.org/10.3390/w13060870
Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global ET algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536. https://doi.org/10.1016/j.rse.2007.04.015
Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial ET algorithm. Remote Sens Environ 115:1781–1800. https://doi.org/10.1016/j.rse.2011.02.019
Noble WS (2006) What is a support vector machine? Nat Biotechnol 24(12):1565–1567. https://doi.org/10.1038/nbt1206-1565
Norman JM, Kustas WP, Humes KS (1995a) Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric Meteorol 77:263–293. https://doi.org/10.1016/0168-1923(95)02265-Y
Norman JM, Kustas WP, Humes KS (1995b) Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric Meteorol 77:263–293. https://doi.org/10.1016/0168-1923(96)02344-1
Norman JM, Kustas WP, Prueger JH, Diak GR (2000) Surface flux estimation using radiometric temperature: a dual-temperature-difference method to minimize measurement errors. Water Resour Res 36:2263–2274. https://doi.org/10.1029/2000WR900033
Pan S, Pan N, Tian H, Friedlingstein P, Sitch S, Shi H, Arora VK, Haverd V, Jain AK, Kato E (2020) Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol Earth Syst Sci 24:1485–1509. https://doi.org/10.5194/hess-24-1485-2020
Pang X, Lei H, Cong Z, Yang H, Duan L, Yang D (2021) Long term variation of ET and water balance based on upscaling eddy covariance observations over the temperate semi-arid grassland of China. Agric Meteorol 308–309. https://doi.org/10.1016/j.agrformet.2021.108566
Pasqualotto N, D’Urso G, Bolognesi SF, Belfiore OR, Van Wittenberghe S, Delegido J, Pezzola A, Winschel C, Moreno J (2019) Retrieval of Evapotranspiration from Sentinel-2: comparison of Vegetation Indices, Semi-empirical models and SNAP Biophysical Processor Approach. Agronomy 9:663. https://doi.org/10.3390/agronomy9100663
Price JC (1984) Land surface temperature measurements from the split window channels of the NOAA 7 Advanced very high Resolution Radiometer. J Geophys Res 89:7231–7237. https://doi.org/10.1029/JD089iD05p07231
Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat f (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566:195–204. https://doi.org/10.1038/s41586-019-0912-1
Reyes Rojas LA, Moletto-Lobos I, Corradini F, Mattar C, Fuster R, Escobar-Avaria C (2021) Determining actual Evapotranspiration based on machine learning and Sinusoidal approaches Applied to Thermal High-Resolution Remote sensing imagery in a semi-arid ecosystem. Remote Sens 13:4105. https://doi.org/10.3390/rs13204105
Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B 25:147–157. https://doi.org/10.1016/S1464-1909(99)00128-8
Rouse JW Jr, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
Ruiz-Álvarez M, Gomariz-Castillo F, Alonso-Sarría F, López-Ballesteros A (2022) Estimation of actual ET using TDTM model and MODIS derived variables. Geocarto Int 37:9242–9260. https://doi.org/10.1080/10106049.2021.2017011
Ryu Y, Baldocchi DD, Kobayashi H, van Ingen C, Li J, Black TA, Beringer J, van Gorsel E, Knohl A, Law BE, Roupsard O (2011) Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and ET from 1 km to global scales. Global Biogeochem Cy 25. https://doi.org/10.1029/2011GB004053
Su Z (2002) The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6:85–100
Tang R, Li ZL (2017) An improved constant evaporative fraction method for estimating daily ET from remotely sensed instantaneous observations. Geophys Res Lett 442319–442326. https://doi.org/10.1002/2017GL072621
Tramontana G, Jung M, Schwalm CR, Ichii K, Camps-Valls G, RadulyB Reichstein M, Arain MA, Cescatti A, Kiely G, Merbold L (2016) Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13(14):4291–4313. https://doi.org/10.5194/bg-13-4291-2016
Ueyama M, Ichii K, Iwata H, Euskirchen ES, Zona D, Rocha AV, Harazono Y, Iwama C, Nakai T, Oechel WC (2014) Change in surface energy balance in Alaska due to fire and spring warming, based on upscaling eddy covariance measurements. J GEOPHYS RES-BIOGEO 119:1947–1969. https://doi.org/10.1002/2014JG002717
Vapnik V (1995) The nature of statistical learning theory Springer. New York, 10, 978-1
Vulova S, Meier F, Rocha AD, Quanz J, Nouri H, Kleinschmit B (2021) Modeling urban ET using remote sensing, flux footprints, and artificial intelligence. Sci Total Environ 786:147293. https://doi.org/10.1016/j.scitotenv.2021.147293
Wagle P, Xiao X, Gowda P, Basara J, Brunsell N, Steiner J, K.C A (2017) Analysis and estimation of tallgrass prairie ET in the central United States. Agric Meteorol 232:35–47. https://doi.org/10.1016/j.agrformet.2016.08.005
Wang K, Wang P, Li Z, Cribb M, Sparrow M (2007) A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J Geophys Res Atmos 112(D15). https://doi.org/10.5194/bg-13-4291-2016
Wang K, Dickinson RE (2012) A review of global terrestrial ET: Observation, modeling, climatology, and climatic variability. Rev Geophys. https://doi.org/10.1029/2011RG000373. 50.2
Wang X, Yao Y, Zhao S, Jia K, Zhang X, Zhang Y, Zhang L, Xu J, Chen X (2017) MODIS-Based estimation of Terrestrial Latent Heat Flux over North America using three ML algorithms. Remote Sens 9:1326. https://doi.org/10.3390/rs9121326
Xu J, Yao Y, Liang S, Liu S, Fisher JB, Jia K, Zhang X, Lin Y, Zhang L, Chen X (2019a) Merging the MODIS and Landsat Terrestrial Latent Heat Flux products using the Multiresolution Tree Method. IEEE Trans Geosci Remote Sens 57:2811–2823. https://doi.org/10.1109/TGRS.2018.2877807
Xu T, Guo Z, Xia Y, Ferreira VG, Liu S, Wang K, … and, Zhao C (2019b) Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. J Hydrol 578:124105. https://doi.org/10.1016/j.jhydrol.2019.124105
Yang F, White MA, Michaelis AR, Ichii K, Hashimoto H, Votava P, Zhu AX, Nemani RR (2006) Prediction of Continental-Scale ET by combining MODIS and AmeriFlux Data through Support Vector Machine. IEEE Trans Geosci Remote Sens 44:3452–3461. https://doi.org/10.1109/TGRS.2006.876297
Yang Y, Chen R, Song Y, Han C, Liu J, Liu Z (2019) Sensitivity of potential ET to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. J Hydrol 568:147–159. https://doi.org/10.1016/j.jhydrol.2018.10.069
Yang Y, Sun H, Xue J, Liu Y, Liu L, Yan D, Gui D (2021) Estimating ET by coupling bayesian model averaging methods with ML algorithms. Environ Monit Assess 193:156. https://doi.org/10.1007/s10661-021-08934-1
Yao Y, Liang S, Li X, Chen J, Wang K, Jia K, Cheng J, Jiang B, Fisher JB, Mu Q, Grünwald T, Bernhofer C, Roupsard O (2015) A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sens Environ 165:216–233. https://doi.org/10.1016/j.rse.2015.05.013
Zhang K, Kimball JS, Running SW (2016) A review of remote sensing based actual ET estimation. WIREs Water 3:834–853. https://doi.org/10.1002/wat2.1168
Zhang L, Xiao J, Zheng Y, Li S, Zhou Y (2020) Increased carbon uptake and water use efficiency in global semi-arid ecosystems. Environ Res Lett 15:034022. https://doi.org/10.1088/1748-9326/ab68ec
Zhao WL, Gentine P, Reichstein M, Zhang Y, Zhou S, Wen Y, Lin C, Li X, Qiu GY (2019) Physics-constrained machine learning of evapotranspiration. Geophys Res Lett 46(24):14496–14507. https://doi.org/10.1029/2019GL085291
Funding
No funding available.
Author information
Authors and Affiliations
Contributions
Authors Contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shima Amani. The work was supervised by Hossein Shafizadeh-Moghadam and Saeed Morid. The first draft of the manuscript was written by Hossein Shafizadeh-Moghadam and all authors commented on previous versions of the manuscript.
Corresponding author
Ethics declarations
Ethical approval
Not required as no animal/human was implicated in the study.
Consent to participate
Authors agreeing to participate any survey or feedback tasks.
Consent to publish
Authors providing consent publication of the manuscript to the journal publisher.
Competing interests
The authors declare no competing interests.
Additional information
Communicated by: H. Babaie
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Amani, S., Shafizadeh-Moghadam, H. & Morid, S. Integrating sentinel-2 and sentinel-3 for actual evapotranspiration estimation across diverse climate zones using the sen-ET plugin and machine learning models. Earth Sci Inform 18, 338 (2025). https://doi.org/10.1007/s12145-025-01786-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12145-025-01786-0