Skip to main content

Advertisement

Log in

Estimating the effect of changing retailing structures on the greenhouse gas performance of FMCG distribution networks

  • Original Paper
  • Published:
Logistics Research

Abstract

The assessment of greenhouse gas (GHG) emissions of supply chain activities is performed to create transparency across the supply chain and to identify emission-cutting opportunities. Literature provides several generic and case study approaches to estimate GHG emissions. But research often focuses on products. This paper sheds light on how the greenhouse performance of a fast-moving consumer goods (FMCG) distribution network depends on several (FMCG specific) variables to set up a “CO2 network footprint”. Within a quantitative computational study, the distribution network footprint of an existing FMCG manufacturer is analyzed. Three options being fundamentally able to reduce total GHG emissions are identified: number of distribution centers, performance of the engaged logistics service provider and shipment structure. First, transportation processes for the investigated FMCG manufacturer are analyzed to derive GHG emissions caused by different distribution shipments. Second, initial data are manipulated to simulate variable changes, that is, different logistics structures. Third, results are reported and analyzed to show up how different changes in logistics structures may reduce GHG, without technological propulsion or use of regenerative energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The abbreviations used in the analysis are GHG, greenhouse gas; CFP, carbon footprint; FMCG, fast-moving consumer goods; MDC, manufacturer distribution center; RDC, retailer distribution center; TSP, transshipment point; LSP, logistics service provider; DSD, direct store delivery; FTL, full truck loads; LTL, less than truck load; DS, delivery shipment.

References

  1. ADEME—Agence de l’environnement et de la maîtrise de l’énergie (2010) Guide des facteurs d’émission (Version 6.1)

  2. Boone N, Quisbrock T (2010) Why size does matter—estimating the length of tours in ring-radial transport networks. Fachbereich Produktion und Wirtschaft, Hochschule Ostwestfalen-Lippe, Lemgo

    Google Scholar 

  3. Bottani E, Montanari R (2010) Supply chain design and cost analysis through simulation. Int J Prod Res 48(10):2859–2886

    Article  Google Scholar 

  4. BSI—British Standards Institution (2008) PAS 2050: 2008—specification for the assessment of the life cycle greenhouse gas emissions of goods and services

  5. DEFRA—Department for Environment, Food and Rural Affairs (2010) Guidelines to Defra/DECC’s GHG conversion factors for company reporting: methodology paper for emission factors

  6. Department for Transport (2007) Effects of payload on the fuel consumption of trucks, London

  7. DIN—Deutsches Institut für Normung e.V. (2006) DIN EN ISO 14040, Berlin

  8. DIN—Deutsches Institut für Normung e.V. (2006) DIN EN ISO 14044, Berlin

  9. DIN—Deutsches Institut für Normung e.V. (2006) DIN EN ISO 14064, Berlin

  10. Ditz D, Ranganathan J (1997) Measuring up. Toward a common framework for tracking corporate environmental performance. World Resources Institute, Washington, DC

    Google Scholar 

  11. Edwards J, McKinnon A, Cullinane S (2011) Comparative carbon auditing of conventional and online retail supply chains: a review of methodological issues. Supply Chain Manag Int J 16(1):57–63

    Article  Google Scholar 

  12. Figliozzi MA (2009) Planning approximations to the average length of vehicle routing problems with time window constraints. Transp Res B Methodol 43(4):438–447

    Article  Google Scholar 

  13. Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14(2):91–94

    Article  Google Scholar 

  14. Fleischmann B (1979) Distributionsplanung. In: Gaede K (ed) Proceedings in operations research 8. Physica, Würzburg, pp 293–308

    Google Scholar 

  15. Global Reporting Initiative (2011) Sustainability reporting guidelines, Amsterdam

  16. Halldórsson Á, Kotzab H, Skjøtt-Larsen T (2009) Supply chain management on the crossroad to sustainability: a blessing or a curse? Logist Res 1(2):83–94

    Article  Google Scholar 

  17. Harris I, Naim M, Palmer A, Potter A, Mumford C (2011) Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions. Int J Prod Ec 131(1):313–321

    Article  Google Scholar 

  18. Hugo A, Pistikopoulos EN (2005) Environmentally conscious long-range planning and design of supply chain networks. J Clean Prod 13(15):1471–1491

    Article  Google Scholar 

  19. Ifeu—Institut für Energie- und Umweltforschung Heidelberg GmbH (2010) Ecological transport information tool for worldwide transports—methodology and data

  20. Ifeu—Institut für Energie- und Umweltforschung Heidelberg GmbH (2010) Fortschreibung und Erweiterung Daten- und Rechenmodell: energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960–2030 (TREMOD, Version 5), Heidelberg

  21. Kohn C (2005) Centralisation of distribution systems and its environmental effects. Linköping University, Linköping

    Google Scholar 

  22. Kranke A (2009) CO2-Berechnung. Logistik Inside 5:47–49

    Google Scholar 

  23. Lalwani C, Disney S, Naim M (2006) On assessing the sensitivity to uncertainty in distribution network design. Int J Phys Distrib Logist Manag 36(1):5–21

    Article  Google Scholar 

  24. Leonardi J, Browne M (2010) A method for assessing the carbon footprint of maritime freight transport: European case study and results. Int J Logist Res Appl 13(5):349–358

    Article  Google Scholar 

  25. Levén E, Segerstedt A (2004) Polarica’s wild berries: an example of a required storage capacity calculation and where to locate this inventory. Supply Chain Manag Int J 9(3):213–218

    Article  Google Scholar 

  26. Liimatainen H, Pöllänen M (2010) Trends of energy efficiency in finnish road freight transport 1995–2009 and forecast to 2016. Energy Policy 38(12):7676–7686

    Google Scholar 

  27. Manzini R, Gebennini E (2008) Optimization models for the dynamic facility location and allocation problem. Int J Prod Res 46(8):2061–2086

    Article  Google Scholar 

  28. Mason R, Bernon M, Sanchez-Rodrigues V (2010) Exploring disconnects between carbon mitigation initiatives and strategies. In: Proceedings of the 15th annual logistics research network conference

  29. McKinnon AC (2007) CO2 emissions from freight transport in the UK, Edinburgh

  30. McKinnon AC (2010) Product-level carbon auditing of supply chains: environmental imperative or wasteful distraction? Int J Phys Distrib Logist Manag 40(1/2):42–60

    Article  Google Scholar 

  31. McKinnon AC, Piecyk MI (2010) Measuring and managing CO2 emissions of European chemical transport

  32. McKinnon AC, Woodburn A (1994) The consolidation of retail deliveries: its effect on CO2 emissions. Transp Policy 1(2):125–136

    Article  Google Scholar 

  33. McKinnon AC (2008) The potential of economic incentives to reduce CO2 emissions from goods transport. First International Transport Forum, Leipzig

    Google Scholar 

  34. McKinnon AC, Piecyk M (2009) Measurement of CO2 emissions from road freight transport: a review of UK experience. Energy Policy 37(10):3733–3742

    Article  Google Scholar 

  35. Müller S, Klaus P (2009) Die Zukunft des Ladungsverkehrs in Europa. Ein Markt an der Schwelle zur Industrialisierung? Hamburg

  36. Olsthoorn X (2003) Implications of globalization for CO2 emissions from transport. Transp Plann Technol 26(1):105–133

    Article  Google Scholar 

  37. Olsthoorn X, Tyteca D, Wehrmeyer W, Wagner M (2001) Environmental indicators for business: a review of the literature and standardisation methods. J Clean Prod 9(5):453–463

    Article  Google Scholar 

  38. Otto A (2008) Neue wege in der Konsumgüterdistribution in Deutschland, Verden

  39. Otto A, Shariatmadari R (2009) Direct store delivery—against all odds. Food Int 12(1):36–38

    Google Scholar 

  40. Otto A, Schoppengerd FJ, Shariatmadari R (2009) Direct store delivery. Concepts, applications and instruments. Springer, Berlin

  41. Piecyk MI, McKinnon AC (2010) Forecasting the carbon footprint of road freight transport in 2020. Int J Prod Ec 128(1):31–42

    Article  Google Scholar 

  42. Quariguasi Frota Neto J, Bloemhof-Ruwaard J, van Nunen J, van Heck E (2008) Designing and evaluating sustainable logistics networks. Int J Prod Ec 111(2):195–208

    Article  Google Scholar 

  43. Rizet C, Cornélis E, Browne M, Léonardi J (2010) GHG emissions of supply chains from different retail systems in Europe. Procedia Social Behav Sci 2(3):6154–6164

    Article  Google Scholar 

  44. Romilly P (1999) Substitution of bus for car travel in urban Britain: an economic evaluation of bus and car exhaust emission and other costs. Transp Environ 4(2):109–125

    Google Scholar 

  45. Saunders C, Barber A (2007) Comparative energy and greenhouse gas emissions of New Zealand’s and the UK’s dairy industry. Agribusiness and Economics Research Unit. Lincoln University, Lincoln

    Google Scholar 

  46. SETAC Europe LCA Steering Committee (2008) Standardisation efforts to measure greenhouse gases and ‘carbon footprinting’ for products. Int J Life Cycle Assess 13(2):87–88

    Article  Google Scholar 

  47. Smith A, Watkiss P, Tweddle G, McKinnon A, Browne M, Hunt A, Treleven C, Nash C, Cross S (2005) The validity of food miles as an indicator of sustainable development, London

  48. Thonemann U (2005) Supply chain excellence im Handel. Trends, Erfolgsfaktoren und Best-practice-Beispiele, Wiesbaden

    Book  Google Scholar 

  49. Tüshaus U, Wittmann S (1998) Strategic logistic planning by means of simple plant location: a case study. In: Fleischmann B, van Nunen JAEE, Grazia Speranza M, Stähly P (eds) Advances in distribution logistics. Springer, Berlin, pp 241–263

  50. Verkehrsrundschau (2011) Stückgutnetz VTL veröffentlicht CO2-Fußabdruck. http://www.verkehrsrundschau.de/stueckgutnetz-vtl-veroeffentlicht-co2-fussabdruck-1030076.html. Accessed 11 May 2011

  51. Wick C, Klumpp M (2010) Logistics carbon footprinting in practice. In: Blecker T, Kersten W, Lüthje C (eds) Innovative process optimization methods in logistics. Emerging trends, concepts and technologies. Erich Schmidt, Berlin, pp 41–62

  52. Wlček H (1998) Gestaltung der Güterverkehrsnetze von Sammelgutspeditionen, Nürnberg

  53. World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) (2001) The greenhouse gas protocol. A corporate accounting and reporting standard. World Business Council for Sustainable Development, Washington, DC

  54. World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) (2010) The corporate value chain (scope 3) accounting and reporting standard

  55. Wouda FH, van Beek P, van der Vorst JGJ, Tacke H (2002) An application of mixed-integer linear programming models on the redesign of the supply network of Nutricia Dairy and Drinks Group in Hungary. OR Spectrum 24(4):449–465

    Article  Google Scholar 

  56. Wu H, Dunn SC (1995) Environmentally responsible logistics systems. Int J Phys Distrib Logist Manag 25(2):20–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellner, F., Igl, J. Estimating the effect of changing retailing structures on the greenhouse gas performance of FMCG distribution networks. Logist. Res. 4, 87–99 (2012). https://doi.org/10.1007/s12159-012-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12159-012-0063-3

Keywords

Navigation