Skip to main content
Log in

Extended Newton-type iteration for nonlinear ill-posed equations in Banach space

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study nonlinear ill-posed equations involving m-accretive mappings in Banach spaces. We produce an extended Newton-type iterative scheme that converges cubically to the solution which uses assumptions only on the first Fréchet derivative of the operator. Using general Hölder type source condition we obtain an error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060–2076, 2005) for choosing the regularization parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alber Ya, I., Ryazantseva, I.P.: Nonlinear ill-posed problems of monotone type. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  2. Argyros, I.K., George, S.: Iterative regularization methods for nonlinear ill-posed operator equations with \(m-\)accretive mappings in Banach spaces. Acta Math Sci 35B(6), 1318–1324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buong, N.: Projection-regularization method and ill-posedness for equations involving accretive operators. Vietnam Math J 20, 33–39 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Buong, N.: Convergence rates in regularization under arbitrarily perturbative operators. Ann Math 43(3), 323–327 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Buong, N.: Convergence rates in regularization for nonlinear ill-posed equations involving \(m\)-accretive mappings in Banach spaces. Appl Math Sci 6(63), 3109–3117 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Buong, N.: Convergence rates in regularization for nonlinear ill-posed equations under \(m\)-accretive perturbations. Zh Vychisl Mat Matem Fiziki 44, 397–402 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Buong, N., Hung, V.Q.: Newton–Kantorovich iterative regularization for nonlinear ill-posed equations involving accretive operators. Ukr Math Zh 57, 23–30 (2005)

    MathSciNet  Google Scholar 

  8. Buong, N., Phuong, N.T.H.: Regularization methods for nonlinear ill-posed equations involving \(m\)-accretive mappings in Banach spaces. Russ Math (Izv VUZ) 57(2), 58–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  10. George, S., Nair, M.T.: A modified Newton–Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations. J Complex 24, 228–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kelley, C.T.: Iterative methods for linear and nonlinear equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  12. Krasnoselskii, M.A., Zabreiko, P.P., Pustylnik, E.I., Sobolevskii, P.E.: Integral operators in spaces of summable functions. Noordhoff International Publ., Leyden (1976)

    Book  Google Scholar 

  13. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in general variables. Academic, New York (1970)

    MATH  Google Scholar 

  14. Plato, R.: On the discrepancy principle for iterative and parametric methods to solve linear ill-posed equations. Numer Math 75, 99–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Semenova, E.V.: Lavrentiev regularization and balancing principle for solving ill-posed problems with monotone operators. Comput Methods Appl Math 4, 444–454 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Xiao, X.Y., Yin, H.W.: Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo 53, 285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiao, X.Y., Yin, H.W.: Achieving higher order of convergence for solving systems of nonlinear equations. Appl Math Comput 311(15), 251–261 (2017)

    MathSciNet  Google Scholar 

  18. Tautenhahn, U.: On the method of Lavrentiev regularization for nonlinear ill-posed problems. Inverse Probl 18, 191–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pereverzev, S., Schock, E.: On the adaptive selection of the parameter in regularization of ill-posed problems. SIAM J Numer Anal 43(5), 2060–2076 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vasin, V., George, S.: An analysis of Lavrentiev regularization method and Newton type process for nonlinear ill-posed problems. Appl Math Comput 2301, 406–413 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Shubha, V.S., George, S., Jidesh, P.: A derivative free iterative method for the implementation of Lavrentiev regularization method for ill-posed equations. Numer Algorithm 68, 289–304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J., Li, J., Liu, Z.: Regularization methods for nonlinear ill-posed problems with accretive operators. Acta Math Sci 28B(1), 141–150 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Liu, Z.: Browder–Tikhonov regularization of non-coercive ill-posed hemivariational inequalities. Inverse Probl 21, 13–20 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work of Santhosh George is supported by the Core Research Grant by SERB, Department of Science and Technology, Govt. of India, EMR/2017/001594. Sreedeep would like to thank National Institute of Technology Karnataka, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Sreedeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreedeep, C.D., George, S. & Argyros, I.K. Extended Newton-type iteration for nonlinear ill-posed equations in Banach space. J. Appl. Math. Comput. 60, 435–453 (2019). https://doi.org/10.1007/s12190-018-01221-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-01221-2

Keywords

Mathematics Subject Classification

Navigation