Abstract
In this paper, a nonlinear mathematical model describing the relationship between hepatitis B virus (HBV), the immune response and the drug therapy is studied. Two main equilibrium points (infection-free and endemic) are obtained. The basic reproduction number is also determined and becomes the threshold for equilibrium point stabilities. We show that when the basic reproduction number is less than one, the infection-free equilibrium point is both locally and globally stable whereas when it is greater than one, the system is uniformly persistent i.e. the virus is endemic and the endemic equilibrium point is globally asymptotically stable. The sensitivity analysis is carried out to seek for potential parameters that could reduce overall HBV infection. Further, by using Pontryagin’s minimum principle, the optimal control problem is constructed with two drug therapy controls. Finally, the numerical simulations are established to show the role of these optimal therapies in controlling viral replication and HBV infection. Our results show that the treatment by inhibiting viral production gives more significant result than the treatment by blocking new infection, however the combination of both treatments is the best strategy to reduce overall HBV infection and the concentration of free virus.






Similar content being viewed by others
References
WHO (World Health Organiaztion): Hepatitis B fact sheet no. 204. The World Health Organisation, Geneva (2017). Retrieved January 2 (2017), from. http://www.who.int/mediacentre/factsheets/fs204/en/
Long, C., Qi, H., Huang, S.H.: Mathematical modeling of cytotoxic lymphocyte-mediated immune responses to hepatitis B virus infection. J. Biomed. Biotechnol. 38, 1573–1585 (2008). https://doi.org/10.1155/2008/743690
Bertoletti, A., Ferrari, C.: Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut 61, 1754–1764 (2012). https://doi.org/10.1136/gutjnl-2011-301073
Dandri, M., Locarnini, S.: New insight in the pathobiology of hepatitis B virus infection. Gut 61, i6–i17 (2012). https://doi.org/10.1136/gutjnl-2012-302056
Goyal, A., Ribeiro, R.M., Perelson, A.S.: The role of infected cell proliferation in the clearance of acute HBV infection in humans. Viruses 9(11), 1–17 (2017). https://doi.org/10.3390/v9110350
Lannacone, M., Sitia, G., Guidotti, L.G.: Pathogenetic and antiviral immune responses against hepatitis B virus. Future Virol. 1, 189196 (2006). https://doi.org/10.2217/17460794.1.2.189
Suslov, A., Boldanova, T., Wang, X., Wieland, S., Heim, M.H.: Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology 154, 1778–1790 (2018)
Tsui, L.V., Guidotti, L.G., Ishikawa, T., Chisari, F.V.: Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc. Natl. Acad. Sci. USA 92, 12398–12402 (1995)
Guidotti, L.G., Ishikawa, T., Hobbs, M.V., Matzke, B., Schreiber, R., Chisari, F.V.: Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4, 2536 (1996)
Guidotti, L.G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., Chisari, F.V.: Viral clearance without destruction of infected cells during acute HBV infection. Science 284, 825–829 (1999)
Phillips, S., Chokshi, S., Riva, A., Evans, A., Williams, R., Naoumov, N.V.: CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J. Immunol. 184, 287–295 (2010). https://doi.org/10.4049/jimmunol.0902761
Pei, R.J., Chen, X.W., Lu, M.J.: Control of hepatitis B virus replication by interferons and toll-like receptor signaling pathways. World J. Gastroenterol. 20, 1161811629 (2014). https://doi.org/10.3748/wjg.v20.i33.11618
Xia, Y., Protzer, U.: Control of hepatitis B virus by cytokines. Viruses 9, 8 (2017). https://doi.org/10.3390/v9010018
Guidotti, L.G., Chisari, F.V.: To kill or to cure: options in host defense against viral infection. Curr. Opin. Immunol. 8, 478–483 (1996)
Chisari, F.V.: Cytotoxic T cells and viral hepatitis. J. Clin. Invest. 99, 1472–1477 (1997). https://doi.org/10.1172/JCI119308
Bartholdy, C., Christensen, J.P., Wodarz, D., Thomsen, A.R.: Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus. J. Virol. 74, 10304–10311 (2000)
Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23, 194–200 (2002)
Bocharov, G., Ludewig, B., Bertoletti, A., Klenerman, P., Junt, T., Krebs, P., Luzyanina, T., Fraser, G., Anderson, R.M.: Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocytes responses. J. Virol. 78(5), 2247–2254 (2004)
Wang, K., Wang, W., Liu, X.: Global stability in a viral infection model with lytic and nonlytic immune responses. Comput. Math. Appl. 51, 1593–1610 (2006). https://doi.org/10.1016/j.camwa.2005.07.020
Lampertico, P., Aghemo, A., Vigan, M., Colombo, M.: HBV and HCV therapy. Viruses 1, 484–509 (2009). https://doi.org/10.3390/v1030484
Hagiwara, S., Nishida, N., Kudo, M.: Antiviral therapy for chronic hepatitis B: combination of nucleoside analogs and interferon. World J. Hepatol. 7(23), 2427–2431 (2015). https://doi.org/10.4254/wjh.v7.i23.2427
Hadziyannis, S.J., Tassopoulos, N.C., Heathcote, E.J., Chang, T.T., Kitis, G., Rizzetto, M., Marcellin, P., Lim, S.G., Goodman, Z., Wulfsohn, M.S., et al.: Adefovir dipivoxil for the treatment of hepatitis Be antigenNegative chronic hepatitis B. N. Eng. J. Med. 348, 800–807 (2003). https://doi.org/10.1056/NEJMoa021812
Erik, D.C., Geoffrey, F., Suzanne, K., Johan, N.: Antiviral treatment of chronic hepatitis B virus (HBV) infections. Viruses 2(6), 1279–1305 (2010)
Nowak, M.A., Bonhoeffer, S., Hill, A., Boehme, R., Thomas, H., McDade, H.: Viral dynamics in hepatitis B infection. Proc. Natl. Acad. Sci. USA 93, 4398–4402 (1996)
Ciupe, S.M.: Modeling the dynamics of hepatitis B infection, immunity, and drug therapy. Immunol. Rev. 285, 38–54 (2018)
Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996). https://doi.org/10.1126/science.272.5258.74
Koonprasert, S., Moore, E.J., Banyatlersthaworn, S.: Sensitivity and stability analysis of hepatitis B virus model with non-cytolytic cure process and logistic hepatocyte growth. Glob. J. Pure Appl. Math. 12, 2297–2312 (2016)
Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Dusheiko, G., Perelson, A.S.: The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc. Natl. Acad. Sci. USA 104, 5050–5055 (2007). https://doi.org/10.1073/pnas.0603626104
Ciupe, S.M., Ribeiro, R.M., Nelson, P.W.: Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol. 247, 23–35 (2007). https://doi.org/10.1016/j.jtbi.2007.02.017
Hews, S., Eikenberry, S., Nagy, J.D., Kuang, Y.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J. Math. Biol. 60, 573–590 (2010). https://doi.org/10.1007/s00285-009-0278-3
Yous, N., Hattaf, K., Tridane, A.: Modeling the adaptive immune response in HBV infection. J. Math. Biol. 63(5), 933–957 (2011). https://doi.org/10.1007/s00285-010-0397-x
Elaiw, A.M., Almuallem, N.A.: Global properties of delayed-HIV dynamics models with differential drug efficacy in co-circulating target cells. Appl. Math. Comput. 265, 1067–1089 (2015). https://doi.org/10.1016/j.amc.2015.06.011
Mboya, K., Makinde, D.O., Massawe, E.S.: Cytotoxic cells and control strategies are effective in reducing the HBV infection through a mathematical modelling. Int. J. Prevent. Treat. 2015 4(3), 48–57 (2015). https://doi.org/10.1155/2018/6710575
Tridane, A., Hattaf, K., Yafia, R., Rihan, F.A.: Mathematical modeling of HBV with the antiviral therapy for the immunocompromised patients. Commun. Math. Biol. Neurosci. ISSN:2052–2541 (2016)
Lewin, S., Ribeiro, R., Walters, T., Lau, G., Bowden, S., Locarnini, S., Perelson, A.: Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 34, 1012–1020 (2001). https://doi.org/10.1053/jhep.2001.28509
Ribeiro, R.M., Lo, A., Perelson, A.S.: Dynamics of hepatitis B virus infection. Microbes Infect. 4(8), 829–835 (2002)
Hattaf, K., Rachik, M., Saadi, S., Yousfi, N.: Optimal control of treatment in a basic virus infection model. Appl. Math. Sci. 3(17–20), 949–958 (2009)
Elaiw, A.M., Alghamdi, M.A., Aly, S.: Hepatitis B virus dynamics: modeling, analysis, and optimal treatment scheduling. Discrete Dyn. Nat. Soc. 2013, 1–9 (2013). https://doi.org/10.1155/2013/712829
Forde, J.E., Ciupe, S.M., Cintron-Arias, A., Lenhart, S.: Optimal control of drug therapy in a hepatitis B model. Appl. Sci. 6, 219 (2016). https://doi.org/10.3390/app6080219
Allali, K., Meskaf, A., Tridane, A.: Mathematical modeling of the adaptive immune responses in the early stage of the HBV infection. Int. J. Differ. Equ. Article ID 6710575 (2018)
Chenar, F.F., Kyrychko, Y.N., Blyuss, K.B.: Mathematical model of immune response to hepatitis B. J. Theor. Biol. 447, 98–110 (2108)
van den Driessche, P., Watmough, J.: Reproductive numbers and sub-threshold endemic equilibria for compartment models of disease transmission. Math. Biosci. 180, 29–48 (2002). https://doi.org/10.1016/S0025-5564(02)00108-6
LaSalle, J.P.: The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1976)
Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 10701083 (1996). https://doi.org/10.1137/S0036141094266449
Li, M.Y., Muldowney, J.S.: On Bendixsons criterion. J. Differ. Equ. 106(1), 2739 (1993). https://doi.org/10.1006/jdeq.1993.1097
Freedman, H.I., Ruan, S., Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6(4), 583600 (1994)
Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96(3), 42530 (1986)
Samsuzzoha, M.D., Singh, M., Lucy, D.: Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Appl. Math. Model. 37, 903–915 (2013). https://doi.org/10.1016/j.apm.2012.03.029
Ngoteya, F.N., Gyekye, Y.N.: Sensitivity analysis of parameters in a competition model. Appl. Comput. Math. 4(5), 363–368 (2015). https://doi.org/10.11648/j.acm.20150405.15
Ciupe, S.M., Ribeiro, R.M., Perelson, A.S.: Antibody responses during hepatitis B viral infection. PLOS Comput. Biol. 10(7), e1003730 (2014). https://doi.org/10.1371/journal.pcbi.1003730
MacDonald, R.A.: Lifespan of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats. Arch. Intern. Med. 107, 335–343 (1961)
Bralet, M.P., Branchereau, S., Brechot, C., Ferry, N.: Cell lineage study in the liver using retroviral mediated gene transfer. Am. J. Pathol. 144, 896–905 (1994)
Eikenberry, S., Hews, S., Nagy, J.D., Kuang, Y.: The dynamics of a delay model of HBV infection with logistic hepatocyte growth. Math. Biosci. Eng. 6, 283–299 (2009)
Whalley, S.A., Murray, J.M., Brown, D., Webster, G.J.M., Emery, V.C., Dusheiko, G.M., Perelson, A.S.: Kinetics of acute hepatitis B virus infection in humans. J. Exp. Med. 193, 847–853 (2001)
Nowak, M.A., May, R.M.: Viral Dynamics. Oxford University Press, Oxford (2000)
Ahmed, R., Gray, D.: Immunologycal memory and protective immunity. Understanding their relation. Science 272, 5460 (1996)
Pontryagin, L.S.V., Boltyanskii, G.R., Gamkrelidze, V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Gordon and Breach Science, New York (1986)
Acknowledgements
This work has been supported by Department of Mathematics, Faculty of Science, Naresuan University, Thailand. Pensiri Yosyingyong has been funded by DPST scholarship from the Thai government.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yosyingyong, P., Viriyapong, R. Global stability and optimal control for a hepatitis B virus infection model with immune response and drug therapy. J. Appl. Math. Comput. 60, 537–565 (2019). https://doi.org/10.1007/s12190-018-01226-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-018-01226-x