Skip to main content
Log in

Dynamical complexities in a predator-prey system involving teams of two prey and one predator

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Empirical studies have shown that animals often focus on short-term benefits under conditions of predation risk, which increases the likelihood that they will co-operate with others. With this motivation, we propose and analyze a predator and two prey model with the assumption that during predation the members of both prey make a team to reduce risk of predation. We incorporate Monod–Haldane and Holling type II functional response to model the interaction with predator. Firstly, we discuss conditions which ensure that model system has a unique positive solution. We investigate stability and Hopf bifurcation conditions to explore dynamics of system around positive equilibrium. We also derive Kolmogorov conditions for the parametric restriction of the system. Secondly, we present numerical solution which substantiate our analytical results. In numerical simulation, we observe period doubling and period halving cascade which explore the dynamical complexity of predator-prey system. Finally, we conclude that partial co-operation and low defense may lead to extinction of prey species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal, T., Saleem, M.: Complex dynamics in a ratio-dependent two-predator one-prey model. Comput. Appl. Math. 34(1), 265–274 (2014)

    Article  MathSciNet  Google Scholar 

  2. Andrews, J.F.: A mathematical model for the continuous culture of micro-organisms utilizing inhibitory substrate. Biotecnhnol. Bioeng. 10, 700–723 (1968)

    Google Scholar 

  3. Ali, N., Jafar, M.: Global dynamics of a modified Leslie–Gower predator-prey model with Crowley–Martin functional responses. J. Appl. Math. Comput. 13, 271–293 (2013)

    Article  MathSciNet  Google Scholar 

  4. Agrawal, R., Jana, D., Upadhayay, R., Rao, V.S.H.: Complex dynamics of sexually reproductive generalist predator and gestation delay in a food chain model: double Hopf-bifurcation to Chaos. J. Appl. Math. Comput. 55, 513–547 (2017)

    Article  MathSciNet  Google Scholar 

  5. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  6. Cramer, N., May, R.: Interspecific competition, predation and species diversity: a comment. J. Theor. Biol. 34, 280–292 (1972)

    Article  Google Scholar 

  7. De Angelis, D.L., Goldstein, R.A., ONeill, R.V.: A model for tropic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  8. Dubey, B., Upadhyay, R.K.: Persistence and extinction of one-prey and two- predators system. Nonlinear Anal. 9, 307–329 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Dugatkin, L.A.: Co-operation Among Animals: A Evolutionary Prospective. Oxford University Press, New York (1997)

    Google Scholar 

  10. Freedman, H.I.: Hopf bifurcation in three species food chain models with group defense. Math. Biosci. 111, 73–87 (1992)

    Article  MathSciNet  Google Scholar 

  11. Freedman, H.I., Hongshun, Q.: Interaction leading to persistence in predator-prey systems with group defense. Bull. Math. Biol. 50, 517–530 (1988)

    Article  MathSciNet  Google Scholar 

  12. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. M. Dekker, New York (1980)

    MATH  Google Scholar 

  13. Gause, G.F.: Struggle for Existence. Williams and Wilkins, Baltimore (1934)

    Book  Google Scholar 

  14. Hasting, A., Powell, T.: Chaos in a three-species food chain. Ecology 72, 896–903 (1991)

    Article  Google Scholar 

  15. Holmes, J.C., Bethel, W.M.: Modification of intermediate host behavior parasites. Zool. J. Linn. Soc. 51, 123–49 (1972)

    Google Scholar 

  16. Holling, C.: The functional response of predators to prey density and its role in mimicry and population regulation. Memo. Entom. Soc. Can. 97, 5–60 (1965)

    Article  Google Scholar 

  17. Hwang, Z.W.: Global analysis of the predator-prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 281, 395–401 (2003)

    Article  MathSciNet  Google Scholar 

  18. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  19. Kuang, Y., Freedman, H.I.: Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math. Biol. 88, 67–84 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Klebanoff, A., Hastings, A.: Chaos in one-predator, two-prey models: general results from bifurcation theory. Math. Biol. 122, 221–233 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Kolmogorov, A.N.: Sulla Teoria di Voltera della Lotta per IEsisttenza. Giorn. Instituto Ital. Attuari. 7, 74–80 (1936)

    Google Scholar 

  22. Lotka, A.: Elements of Mathematical Biology. Dover Publications, New York (1956)

    MATH  Google Scholar 

  23. Martin, M.M., Mitani, J.C.: Conflict and co-operation in wild life chimpanzees. Adv. Study Behav. 35, 275–331 (2005)

    Article  Google Scholar 

  24. Mischaikow, K., Wolkowicz, G.S.: A predator-prey system involving group defense: a connection matrix approach. Nonlinear. Anal. 14, 955–969 (1990)

    Article  MathSciNet  Google Scholar 

  25. May, R.M.: Limit cycles in predator-prey communities. Science 177, 900–902 (1972)

    Article  Google Scholar 

  26. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New Delhi (2002)

    Book  Google Scholar 

  27. Pal, R., Basu, D., Banerjee, M.: Modelling of phytoplankton allelopathy with Monod–Haldane type functional response–a mathematical study. Biosystems 95, 243–253 (2009)

    Article  Google Scholar 

  28. Pasquet, A., Krafft, B.: Cooperation and prey capture efficiency in a social spider, Anelosimus eximius (Araneae, Theridiidae). Ethology 90, 121–133 (1992)

    Article  Google Scholar 

  29. Raw, S.N., Mishra, P., Kumar, R., Thakur, S.: Complex behavior of prey-predator system exhibiting group defense: a mathematical modeling study. Chaos. Soli. Frac. 100, 74–90 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sokol, J., Howell, J.A.: Kinetics of phenol oxidation by washed cell. Biotecnhnol. Bioeng. 23, 203–249 (1980)

    Google Scholar 

  31. Shen, C.: Permanence and global attractivity of the food-chain system with Holling IV type functional response. Appl. Math. Comput. 194(1), 179–185 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Strogatz, S.H.: Non-linear Dyanmics and Chaos with Applications to Physics, Bilogy, Chemistry, and Engineering. Westview Press, Colorado (2001)

    Google Scholar 

  33. Tripathi, J.P., Abbas, S., Thankur, M.: Local and global stability analysis of a two prey one predator model with help. Commun. Nonlinear Sci. Numer. Simul. 19, 3284–3297 (2014)

    Article  MathSciNet  Google Scholar 

  34. Tener, J.S.: Muskoxen. Queens Printer, Ottawa (1965)

    Google Scholar 

  35. Upadhyay, R.K., Raw, S.N.: Complex dynamics of a three species food-chain model with Holling type IV functional response. Nonlinear Anal. Model Control 16, 353–374 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Upadhyay, R.K., Naji, R.K., Raw, S.N., Dubey, B.: The role of top predator interference on the dynamics of a food chain model. Commun. Nonlinear. Sci. Numer. Simul. 18, 757–768 (2013)

    Article  MathSciNet  Google Scholar 

  37. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  Google Scholar 

  38. Wang, W., Wang, H., Li, Z.: The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy. Chaos. Soli. Frac. 32, 1772–1785 (2007)

    Article  MathSciNet  Google Scholar 

  39. Wiggins, S.: Introduction to Applied Nonlinear Dynamical System and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  40. Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system involving group defense. SIAM. J. Appl. Math. 48, 592–606 (1988)

    Article  MathSciNet  Google Scholar 

  41. Zhao, M., Songjuan, L.V.: Chaos in a three-species food chain model with a Beddington–DeAngelis functional response. Chaos. Soli. Frac. 40, 2305–2316 (2009)

    Article  MathSciNet  Google Scholar 

  42. Zhang, S.W., Tan, D.J., Chen, L.S.: Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations. Chaos. Soli. Frac. 27, 980–90 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work done in this paper is supported by a grant (File No. ECR/2017/000141) under Early Career Research (ECR) Award, Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, to the corresponding author (SNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Raw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Raw, S.N. Dynamical complexities in a predator-prey system involving teams of two prey and one predator. J. Appl. Math. Comput. 61, 1–24 (2019). https://doi.org/10.1007/s12190-018-01236-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-01236-9

Keywords

Mathematics Subject Classification