Skip to main content
Log in

Stability and global Hopf bifurcation in a Leslie–Gower predator-prey model with stage structure for prey

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with a predator-prey model with Leslie–Gower functional response and stage structure for prey. By regarding time delay as the bifurcation parameter, sufficient conditions for the local stability of the positive equilibrium and the existence of Hopf bifurcation are given. Some explicit formulas determining the properties of Hopf bifurcation are established by using the normal form method and center manifold theorem. The global continuation of periodic solutions bifurcating from the positive equilibrium is given due to a global Hopf bifurcation result for functional differential equations. Finally, numerical simulations are carried out to show consistency with theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aiello, W.G., Freedman, H.I.: A time-delay model of single species growth with stage structure. Math. Biosci. 101, 139–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aziz-Alaoui, M.A., Okiye, M.D.: Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-type II schems. Appl. Math. Lett. 16(7), 1069–1075 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beretta, E., Kuang, Y.: Global analysis in some delayed ratio-dependent predator-prey systems. Nonlinear Anal. Theory Methods Appl. 32(3), 381–408 (1998)

    Article  MATH  Google Scholar 

  4. Beretta, E., Kuang, Y.: Geometric stability switch criteria in delay differential system with delay dependent parameters. SIAM J. Appl. Math. 33(5), 1144–1165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Y.L., Wang, W.M.: Stability and Hopf bifurcation of the stationary solutions to an epidemic model with cross-diffusion. Comput. Math. Appl. 70(8), 1906–1920 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cai, Y.L., Zhao, C.D., Wang, W.M., Wang, J.F.: Dynamics of a Leslie-Gower predator-prey model with additive Allee effect. Appl. Math. Model. 39(7), 2092–2106 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cushing, J.: Peirodic time-dependent predtaor-prey system. SIAM J. Appl. Math. 32, 82–95 (1997)

    Article  Google Scholar 

  8. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator-prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398(1), 278–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hale, J.K.: Theory of Functional Differerntial Equations. Springer, New York (1997)

    Google Scholar 

  10. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  11. He, X.: Stability and delays in a predator-prey system. J. Math. Anal. Appl. 198, 355–370 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huo, H.F., Wang, X.H., Castillo-Chavev, C.: Dynamics of a stage-structured Leslie–Gower predator-prey model. Math. Probl. Eng. 149341, 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hus, S.B., Hwang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  Google Scholar 

  14. Ji, C.Y., Jiang, D.Q., Shi, N.Z.: Analysis of a predator-prey model with modified Leslie–Gower and Holling-type II schems with stochastic perturbation. J. Math. Anal. Appl. 359(2), 482–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, J., Song, Y.L.: Delay-induced Bogdanov–Takens bifurcation in a Leslie–Gower predator-prey model with nonmonotonic functional response. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2454–2465 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kuang, Y.: Delay Differerntial Equations with Application in Population Dynamics. Academic Press, Boston (1993)

    Google Scholar 

  17. Leslie, P.H.: Some further notes on the use of matrics in the population mathematics. Biomatrika 35(3–4), 213–245 (1948)

    Article  MATH  Google Scholar 

  18. Liu, C., Zhang, Q.L.: Dynamical behavior and stability analysis in a stage-structured prey predator model with discrete delay and distributed delay. Abstr Appl Anal 2014, Article ID 184174 (2014)

  19. Liu, C., Zhang, Q.L., Li, J.N., Yue, W.Q.: Stability analysis in a delayed prey-predator-resource model with harvest effort and stage structure. Appl. Math. Comput. 238, 177–192 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Liu, C., Lu, N., Zhang, Q., Li, J., Liu, P.: Modeling and analysis in a prey-predator system with commercial harvesting and double time delays. Appl. Math. Comput. 281, 77–101 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Liu, J., Zhang, Z.Z.: Dynamics of a predator-prey system with stage structure and two delays. J. Nonlinear Sci. Appl. 9(5), 3074–3089 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, Y.F.: Global Hopf bifurcation in the Leslie–Gower predator-prey model with two delays. Nonlinear Anal. Real World Appl. 13, 370–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64(4), 349–364 (2011)

    Article  MathSciNet  Google Scholar 

  24. Meng, X.Y., Qin, N.N., Huo, H.F.: Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. J. Biol. Dyn. 12(1), 342–374 (2018)

    Article  MathSciNet  Google Scholar 

  25. Meng, X.Y., Wu, Y.Q.: Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation. Int. J. Bifur. Chaos. 28(3), 1850042 (2018)

  26. Nindjina, A.F., Aziz-Alaouib, M.A., Cadivelb, M.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal. Real World Appl. 7(5), 1104–1118 (2006)

    Article  MathSciNet  Google Scholar 

  27. Peng, Y.H., Liu, Y.Y.: Turing instability and Hopf bifurcation in a diffusive Leslie–Gower predator-prey model. Math. Method Appl. Sci. 39(14), 4158–4170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruan, S.G.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Q. Appl. Math. 1, 159–173 (2011)

    MATH  Google Scholar 

  29. Shaikh, A.A., Das, H., Ali, N.: Study of LG-Holling type III predator-prey model with disease in predator. J Appl Math Comput (2017). https://doi.org/10.1007/s12190-017-1142-z

  30. Song, Y.L., Yuan, S.L.: Bifurcation analysis for a regulated logistic growth model. Appl. Math. Model. 31(9), 1729–1738 (2007)

    Article  MATH  Google Scholar 

  31. Sun, X.K., Huo, H.F., Xiang, H.: Bifurcation and stability analysis in predator-prey model with a stage-structure for predator. Nonlinear Dyn. 58, 497–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, J.H.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 350(12), 4799–4838 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, R., Wang, Z.L., Zhang, F.Q.: Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay. Appl. Math. Comput. 269, 332–342 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Yuan, R., Jiang, W.H., Wang, Y.: Saddle-Node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting. J. Math. Anal. Appl. 422(2), 1072–1090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, S.L., Zhang, F.Q.: Stability and global Hopf bifurcation in a delayed predator-prey system. Nonlinear Anal. Real World Appl. 11, 959–977 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Y., Zhang, Q.L., Yan, X.G.: Complex dynamics in a singular Leslie–Gower predator-prey bioeconomic model with time delay and stochastic fluctuations. Phys. A 404, 180–191 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Z.Z., Yang, H.Z., Ming, F.: Hopf bifurcation in a predator-prey system with Holling type III functional response and time delays. J. Appl. Math. Comput. 4(1–2), 337–356 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks and gratitude to four reviewers for their suggestions towards the improvement of the manuscript. This work is supported by the National Natural Science Foundation of China (Grant Nos. 1661050 and 11461041), and the Development Program for HongLiu Outstanding Young Teachers in Lanzhou University of Technology (Q201308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-You Meng.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, XY., Huo, HF. & Zhang, XB. Stability and global Hopf bifurcation in a Leslie–Gower predator-prey model with stage structure for prey. J. Appl. Math. Comput. 60, 1–25 (2019). https://doi.org/10.1007/s12190-018-1201-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1201-0

Keywords

Mathematics Subject Classification

Navigation