Skip to main content
Log in

Solving fuzzy dual complex linear systems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to provide a simple and practical method for finding the solution of the fuzzy complex square systems of order n, included of linear equations which are given in the dual form. For this end, the process of solving a fuzzy dual complex linear system is first described and the conditions of existence and uniqueness of solution is found. Next, the proposed method is appeared with the proof of two theorems and the process of the method is regulated and summarized by solving four real linear square systems of order n. Also, it is shown that the proposed method is efficient and effective in the point of view computationally. Finally, two numerical examples are presented to illustrate the applicability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allahviranloo, T., Ghanbari, M.: On the algebraic solution of fuzzy linear systems based on interval theory. Appl. Math. Model. 36, 5360–5379 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amirfakhrian, M.: Analyzing the solution of a system of fuzzy linear equations by a fuzzy distance. Soft. Comput. 16, 1035–1041 (2012)

    Article  MATH  Google Scholar 

  3. Behera, D., Chakraverty, S.: A new method for solving real and complex fuzzy system of linear equations. Comput. Math. Model. 23, 507–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behera, D., Chakraverty, S.: Solution of fuzzy system of linear equations with polynomial parametric form. Appl. Appl. Math. Int. J. 7, 648–657 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Behera, D., Chakraverty, S.: Solving fuzzy complex system of linear equations. Inf. Sci. 277, 154–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Behera, D., Chakraverty, S.: Erratum to Solving fuzzy complex system of linear equations (Information sciences 277: 154–162). Inf. Sci. 369(2016), 788–790 (2014)

    Google Scholar 

  7. Buckley, J.J.: Fuzzy complex number. Fuzzy Sets Syst. 33, 333–345 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, S.G., Rees, N.W., Feng, G.: Analysis and design for a class of complex control systems. Part I: fuzzy modelling and identification. Automatica 33, 1017–1028 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Das, S., Chakraverty, S.: Numerical solution of interval and fuzzy system of linear equations. Appl. Appl. Math. Int. J. 7, 334–356 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Dehghan, M., Hashemi, B.: Iterative solution of fuzzy linear systems. Appl. Math. Comput. 175, 645–674 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Djanybekov, B.S.: Interval householder method for complex linear systems. Reliab. Comput. 12, 35–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ezzati, R.: Solving fuzzy linear systems. Soft. Comput. 15, 193–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fieguth, P.: An Introduction to Complex Systems, Society, Ecology, and Nonlinear Dynamics. Springer, Berlin (2017)

    Book  Google Scholar 

  14. Ford, W.: Numerical Linear Algebra with Applications. Elsevier, New York (2015)

    MATH  Google Scholar 

  15. Friedman, M., Ming, M., Kandel, A.: Fuzzy linear systems. Fuzzy Sets Syst. 96, 201–209 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, M., Ming, M., Kandel, A.: Duality in fuzzy linear systems. Fuzzy Sets Syst. 109, 55–58 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Filev, D.: Fuzzy modeling of complex systems. Int. J. Approx. Reason. 5, 281–290 (1991)

    Article  MATH  Google Scholar 

  18. Hladik, M.: Solution sets of complex linear interval systems of equations. Reliab. Comput. 14, 78–87 (2010)

    MathSciNet  Google Scholar 

  19. Hukuhara, M.: Intégration des applications measurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)

    MathSciNet  MATH  Google Scholar 

  20. Jahantigh, M.A., Khezerloo, S., Khezerloo, M.: Complex fuzzy linear systems. Int. J. Ind. Math. 2, 21–28 (2010)

    Google Scholar 

  21. Khastan, A., Rodríguez-López, R.: On the solutions to first order linear fuzzy differential equations. Fuzzy Sets Syst. 295, 114–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar, A., Bansal, A.: A new computational method for solving fully fuzzy linear systems of triangular fuzzy numbers. Fuzzy Inf. Eng. 4, 63–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Muzzioli, S., Reynaerts, H.: Fuzzy linear systems of the form \(A_{1}x+b_{1}=A_{2}x+b_{2}\). Fuzzy Sets Syst. 157, 939–951 (2006)

    Article  MATH  Google Scholar 

  24. Otadi, M., Mosleh, M.: Simulation and evaluation of dual fully fuzzy linear systems by fuzzy neural network. Appl. Math. Model. 35, 5026–5039 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petkovic, M.S., Petkovic, L.D.: Complex Interval Arithmetic and its Applications. Wiley-VCH, Weinheim (1998)

    MATH  Google Scholar 

  26. Qiu, J., Wu, C., Li, F.: On the restudy of fuzzy complex analysis: Part I. The sequence and series of fuzzy complex numbers and their convergences. Fuzzy Sets Syst. 115, 445–450 (2000)

    Article  MATH  Google Scholar 

  27. Qiu, J., Wu, C., Li, F.: On the restudy of fuzzy complex analysis: Part II. The sequence and series of fuzzy complex numbers and their convergences. Fuzzy Sets Syst. 120, 517–521 (2001)

    Article  MATH  Google Scholar 

  28. Rahgooy, T., Yazdi, H.S., Monsefi, R.: Fuzzy complex system of linear equations applied to circuit analysis. Int. J. Comput. Electr. Eng. 1, 1793–8163 (2009)

    Google Scholar 

  29. Salahshour, S., Nejad, M.H.: Approximating solution of fully fuzzy linear systems in dual form. Int. J. Ind. Math. 5, 19–23 (2013)

    Google Scholar 

  30. Tian, Z., Hu, L., Greenhalgh, D.: Perturbation analysis of fuzzy linear systems. Inf. Sci. 180, 4706–4713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vroman, A., Deschrijver, G., Kerre, E.E.: Solving systems of linear fuzzy equations by parametric functions—an improved algorithm. Fuzzy Sets Syst. 158, 1515–1534 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zimmermann, H.J.: Fuzzy Set Theory and its Application. Kluwer Academic Publishers, Norwell (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chehlabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chehlabi, M. Solving fuzzy dual complex linear systems. J. Appl. Math. Comput. 60, 87–112 (2019). https://doi.org/10.1007/s12190-018-1204-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1204-x

Keywords