Skip to main content
Log in

Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a new numerical algorithm for solving the weakly singular Volterra integral equations. The operational matrix of fractional integral based on fractional-order Chelyshkov polynomials is constructed and together with the collocation method is used to reduce the integral equation into a system of algebraic equations. The convergence of the method is discussed in \(L^{2}\)-norm and finally, some numerical examples are shown to illustrate the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jerri, A.J.: Introduction to Integral Equations with Applications. Wiley, London (1999)

    MATH  Google Scholar 

  2. Willis, J.R., Nemat-Nasse, S.: Singular pertubation solution of a class of singular integral equations. Q. Appl. Math. XLVIII(4), 741–753 (1990)

    Article  MATH  Google Scholar 

  3. Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  4. Karimi Vanani, S., Soleymani, F.: Tau approximate solution of weakly singular Volterra integral equations. Math. Comput. 57, 494–502 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Li, X., Tang, T.: Convergence analysis of Jacobi spectra collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China 7, 69–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectal-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)

    Article  MATH  Google Scholar 

  7. Chen, Y., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth solutions. Comput. Appl. Math 233, 938–950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    Book  MATH  Google Scholar 

  9. Gheorghiu, C.I.: In: Popoviciu, T. (ed.) Spectral Methods for Differential Problems, Institute of Numerical Analysis, Cluj-Napoca (2007)

  10. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  11. Coutsias, E.A., Hagstrom, T., Torres, D.: An efficient spectral method for ordinary differential equations with rational function. Math. Comput. 65, 611635 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doha, E.H.: On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. J. Comput. Appl. Math. 139, 275–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doha, E.H., Abd-Elhameed, W.M.: Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method. J. Comput. Appl. Math. 181, 24–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. Applied Mathematical Series, vol. 55. National Bureau of Standards, New York (1970)

  15. Chelyshkov, V.S.: Alternative orthogonal polynomials and quadratures. Electron. Trans. Numer. Anal. 25, 17–26 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Ahmadi Shali, J., Darania, P., Akbarfam, A.A.: Collocation method for nonlinear Volterra–Fredholm integral equations. J. Appl. Sci. 2, 115–121 (2012)

    Google Scholar 

  17. Rasty, M., Hadizadeh, M.: A Product integration approach on new orthogonal polynomials for nonlinear weakly singular integral equations. Acta Appl. Math. 109, 861–873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Soori, Z., Aminataei, A.: The spectral method for solving Sine-Gordon equation using a new orthogonal polynomial. ISRN Appl. Math. 2012, 462731 (2012). https://doi.org/10.5402/2012/462731

    Article  MathSciNet  MATH  Google Scholar 

  19. Oguza, C., Sezer, M.: Chelyshkov collocation method for a class of mixed functional integro-differential equations. Appl. Math. comput. 259, 943–954 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Bazm, S., Hosseini, A.: Numerical solution of nonlinear integral equations using alternative Legendre polynomials. J. Appl. Math. Comput. 56(1), 25–51 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Saffar Ardabili, J., Talaei, Y.: Chelyshkov collocation method for solving the two-dimensional Fredholm–Volterra integral equations. Int. J. Appl. Comput. Math. 4(1), 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Talaei, Y., Asgari, M.: An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations. Neural. Comput. Appl. 28, 1–8 (2017)

    Google Scholar 

  23. Mohammadi, F., Mohyud-Din, S.T.: A fractional-order Legendre collocation method for solving the Bagley-Torvik equations. Adv. Differ. Equ. 2016(1), 269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Muntz-Legendre tau method for fractional differential equations. Appl. Math. Model. 40(2), 671–684 (2016)

    Article  MathSciNet  Google Scholar 

  25. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40(17), 8087–8107 (2016)

    Article  MathSciNet  Google Scholar 

  26. Yuzbasi, S.: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Comput. Appl. Math. 219, 6328–6343 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Esmaeili, Sh, Shamsi, M., Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials. Comput. Math. Appl. 62, 918–929 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37(7), 5498–5510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Diethelm, K.: The Analysis of Fractional Differential Equations. Lectures Notes in Mathematics. Springer, Berlin (2010)

  30. Atkinson, K.E., Han, W.: Theoretical Numerical Analysis, 2nd edn. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  31. Pourgholi, R., Tahmasebi, A., Azimi, R.: Tau approximate solution of weakly singular Volterra integral equations with Legendre wavelet basis. Int. J. Comput. Math. 94(7), 1337–1348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Eshaghi, J., Adibi, H., Kazem, S.: Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudospectral method. Math. Methods. Appl. Sci. 39, 3411–3425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Talaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaei, Y. Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations. J. Appl. Math. Comput. 60, 201–222 (2019). https://doi.org/10.1007/s12190-018-1209-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1209-5

Keywords

Mathematics Subject Classification