Abstract
A fuzzy graph structure is an extension of a fuzzy graph. In this research paper, we present certain notions, including semi strong min-product of fuzzy graph structures, regular fuzzy graph structures, strong and complete fuzzy graph structures. Moreover, we discuss degree and total degree of a vertex in semi strong min-product of fuzzy graph structures and investigate some of their properties. Furthermore, we present an application of fuzzy graph structures in decision-making, that is, identification of best traveling service. In last, we develop an algorithm explaining general procedure of our application.













Similar content being viewed by others
References
Akram, M., Akmal, R., Alshehri, N.: On \(m\)-polar fuzzy graph structures. SpringerPlus (2016). https://doi.org/10.1186/s40064-016-3066-8
Akram, M., Alshehri, N., Akmal, R.: Certain concepts in m-polar fuzzy graph structures. Discrete Dyn. Nat. Soc. (2016). https://doi.org/10.1155/2016/5859080
Akram, M., Luqman, A.: A new decision-making method based on bipolar neutrosophic directed hypergraphs. J. Appl. Math. Comput. 57(1–2), 547–575 (2018)
Akram, M.: \(m\)-Polar Fuzzy Graphs: Theory, Methods & Applications, Studies in Fuzziness and Soft Computing 371, pp. 1–284. Springer, Berlin (2019)
Bhattacharya, P.: Some remarks on fuzzy graphs. Pattern Recognit. Lett. 6(5), 297–302 (1987)
Dinesh, T.: A study on graph structures, incidence algebras and their fuzzy analogues. Ph.D.thesis, Kannur University, Kannur, India (2011)
Harinath, P., Lavanya, S.: Fuzzy graph structures. Int. J. Appl. Eng. Res. 10, 70–74 (2015)
Kauffman, A.: Introduction a la Theorie des Sous-emsembles Flous 1. Masson et Cie, Paris (1973)
Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs. Physica Verlag, Heidelberg (2000). ISBN 978-3-7908-1854-3
Mordeson, J.N., Chang-Shyh, P.: Operations on fuzzy graphs. Inf. Sci. 79, 159–170 (1994)
Nagoor Gani, A., Radha, K.: On regular fuzzy graphs. J. Phys. Sci. 12, 33–44 (2008)
Nagoor Gani, A., Radha, K.: The degree of a vertex in some fuzzy graphs. Int. J. Algorithms Comput. Math. 2(3), 107–116 (2009)
Ramakrishnan, R.V., Dinesh, T.: On generalised fuzzy graph structures. Appl. Math. Sci. 5(4), 173–180 (2011)
Ramakrishnan, R.V., Dinesh, T.: On generalised fuzzy graph structures II. Adv. Fuzzy Math. 6(1), 5–12 (2011)
Ramakrishnan, R.V., Dinesh, T.: On generalised fuzzy graph structures III. Bull. Kerala Math. Assoc. 8(1), 57–66 (2011)
Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Shimura, M. (eds.) Fuzzy Sets and their Applications, pp. 77–95. Academic Press, New York (1975)
Sampathkumar, E.: Generalized graph structures. Bull. Kerala Math. Assoc. 3(2), 65–123 (2006)
Sunitha, M.S., Vijayakumar, A.: Complement of a fuzzy graph. Indian J. Pure Appl. Math. 33(9), 1451–1464 (2002)
Shahzadi, S., Akram, M.: Intuitionistic fuzzy soft graphs with applications. J. Appl. Math. Comput. 55(12), 369–392 (2017)
Sunitha, M.S., Vijayakumar, A.: A characterization of fuzzy trees. Inf. Sci. 113(9), 293–300 (1999)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)
Zhan, J., Masood, H., Akram, M.: Novel decision-making algorithms based on intuitionistic fuzzy rough environment. Int. J. Mach. Learn. Cybernet. (2018). https://doi.org/10.1007/s13042-018-0827-4
Zhan, J., Akram, M., Sitara, M.: Novel decision-making method based on bipolar neutrosophic information. Soft Comput. (2018). https://doi.org/10.1007/s00500-018-3552-8
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Akram, M., Sitara, M. Certain fuzzy graph structures. J. Appl. Math. Comput. 61, 25–56 (2019). https://doi.org/10.1007/s12190-019-01237-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-019-01237-2