Skip to main content
Log in

Finite element method for drifted space fractional tempered diffusion equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in different field of science have been reconsidered in this terms like diffusion wave equations, Schr\(\ddot{o}\)dinger equation and so on. In the present paper, a time dependent tempered fractional diffusion equation of order \(\gamma \in (0,1)\) with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank–Nicolson discretization is used in the time direction. By implementing finite element approximation a priori space–time estimate has been derived and we proved that the convergent order is \(\mathcal {O}(h^2+\varDelta t ^2)\) where h is the space step size and \(\varDelta t\) is the time difference. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meng, Q.-J., Ding, D., Sheng, Q.: Preconditioned iterative methods for fractional diffusion models in finance. Numer. Methods Partial Differ. Equ. 31(5), 1382–1395 (2015)

    Article  MathSciNet  Google Scholar 

  2. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Political Econ. 81(3), 637–654 (1973)

    Article  MathSciNet  Google Scholar 

  3. Gorenflo, R., et al.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1–4), 129–143 (2002)

    Article  MathSciNet  Google Scholar 

  4. Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233(10), 2438–2448 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cartea, A., del-Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Phys. A Stat. Mech. Appl. 374(2), 749–763 (2007)

    Article  Google Scholar 

  6. Jin, B., et al.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52(5), 2272–2294 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  8. Arqub, O.A., Odibat, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 94(3), 1819–1834 (2018)

    Article  Google Scholar 

  9. Arqub, O.A., Maayah, B.: Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos Solitons Fractals 117, 117–124 (2018)

    Article  MathSciNet  Google Scholar 

  10. Arqub, O.A., Al Smadi, M.: Numerical algorithm for solving time? Fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ. 34(5), 1577–1597 (2018)

    Article  MathSciNet  Google Scholar 

  11. Al-Smadi, M., Arqub, O.A.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)

    MathSciNet  Google Scholar 

  12. Arqub, O.A.: Solutions of time? Fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Partial Differ. Equ. 34(5), 1759–1780 (2018)

    Article  MathSciNet  Google Scholar 

  13. Arqub, O.A., Al-Smadi, M.: Atangana–Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 117, 161–167 (2018)

    Article  MathSciNet  Google Scholar 

  14. Weng, Z., Zhai, S., Feng, X.: A Fourier spectral method for fractional-in-space Cahn–Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gajda, J., Magdziarz, M.: Fractional Fokker–Planck equation with tempered \(\alpha \)-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E 82(1), 011117 (2010)

    Article  Google Scholar 

  16. Balint, A.M., Balint, S.: In classical mechanics objectivity lost when Riemann-Liouwille or Caputo fractional order derivatives are used. arXiv preprint arXiv:1806.04186 (2018)

  17. Ding, H., Li, C., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)

    Article  MathSciNet  Google Scholar 

  18. Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection-diffusion equation. Numer. Algorithms 56(3), 383–403 (2011)

    Article  MathSciNet  Google Scholar 

  19. Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wang, X., Deng, W.: Discontinuous Galerkin methods and their adaptivity for the tempered fractional (convection) diffusion equations. arXiv preprint arXiv:1706.02826 (2017)

  21. Çelik, C., Duman, M.: Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer. Math. 120, 270–286 (2017)

    Article  MathSciNet  Google Scholar 

  22. Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100 (1987)

    Article  MathSciNet  Google Scholar 

  23. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)

    Article  Google Scholar 

  24. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  25. Evans, L.C.: Partial differential equations. American Mathematical Society (2010)

  26. Quarteroni, A., Valli, A.: Introduction. Springer, Berlin (1994)

    Google Scholar 

  27. Chen, M. et al.: A fast multigrid finite element method for the time-dependent tempered fractional problem. arXiv preprint arXiv:1711.08209 (2017)

Download references

Acknowledgements

The authors would like to express deep gratitude to Cem Celik and Melda Duman for helpful suggestions and discussions. The authors are also grateful to the reviewers for their careful reading and intuitive implications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Kumar, B.V.R. Finite element method for drifted space fractional tempered diffusion equation. J. Appl. Math. Comput. 61, 117–135 (2019). https://doi.org/10.1007/s12190-019-01241-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01241-6

Keywords

Mathematics Subject Classification