Skip to main content
Log in

Mathematical model for continuous delayed single-species population with impulsive state feedback control

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we formulate a mathematical model for a continuous delayed single-species population with impulsive state feedback control. We give the existence and uniqueness of the order-1 periodic solution in view of successor function. At the same time, the stability of the order-1 periodic solution is proved by means of Huang et al. (Nonlinear Dyn 90:1–9, 2017). Finally, some results are justified by some numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anguelo, R., Dufourd, C., Dufourd, C.: Mathematical model for pest-insect control using mating disruption and trapping. Appl. Math. Model. 52, 437–457 (2017)

    Article  MathSciNet  Google Scholar 

  2. Tian, Y., Zhang, T., Sun, K.: Dynamics analysis of a pest management prey–predator model by means of interval state monitoring and control. Nonlinear Anal. Hybrid Syst. 23, 122–141 (2017)

    Article  MathSciNet  Google Scholar 

  3. Sun, K., Zhang, T., Tian, Y.: Dynamics analysis and control optimization of a pest management predator–prey model with an integrated control strategy. Appl. Math. Comput. 292, 253–271 (2017)

    MATH  MathSciNet  Google Scholar 

  4. Liang, J., Tang, S., Cheke, R.A.: Beverton–Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance. Commun. Nonlinear Sci. Numer. Simul. 36, 327–341 (2016)

    Article  MathSciNet  Google Scholar 

  5. Sun, K., Zhang, T., Tian, Y.: Theoretical study and control optimization of an integrated pest management predator–prey model with power growth rate. Math. Biosci. 279, 13–26 (2016)

    Article  MathSciNet  Google Scholar 

  6. Zhang, S., Zhang, J., Men, X., Zhang, T.: Geometric analysis of a pest management model with Hollings type III functional response and nonlinear state feedback control. Nonlinear Dyn. 84, 1529–1539 (2016)

    Article  MathSciNet  Google Scholar 

  7. Macphersona, M.F., Kleczkowski, A., Healey, J.R., Quine, C.P., Hanley, N.: The effects of invasive pests and pathogens on strategies for forest diversification. Ecol. Model. 350, 87–99 (2017)

    Article  Google Scholar 

  8. Jeger, M.J., Xu, X.-M.: Modelling the dynamics of a plant pathogen and a biological control agent in relation to flowering pattern and populations present on leaves. Ecol. Model. 313, 13–28 (2015)

    Article  Google Scholar 

  9. Jackson, M., Chen-Charpentier, B.M.: A model of biological control of plant virus propagation with delays. J. Comput. Appl. Math. 330, 855–865 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ghosh, B., Grognard, F., Mailleret, L.: Natural enemies deployment in patchy environments for augmentative biological control. Appl. Math. Comput. 266, 982–999 (2015)

    MATH  MathSciNet  Google Scholar 

  11. Klein, T., Zihlmann, D., Derlon, N., Isaacson, C., Szivak, I., Weissbrodt, D.G., Pronk, W.: Biological control of biofilms on membranes by metazoans. Water Res. 88, 20–29 (2016)

    Article  Google Scholar 

  12. Pang, G., Chen, L.: Periodic solution of the system with impulsive state feedback control. Nonlinear Dyn. 78, 743–753 (2014)

    Article  MathSciNet  Google Scholar 

  13. Liu, Q., Huang, L., Chen, L.: A pest management model with state feedback control. Adv. Differ. Equ. 2016, 292–303 (2016)

    Article  MathSciNet  Google Scholar 

  14. Smith, F.E.: Population dynamics in Daphnia magna and a new model for population growth. Ecology 44, 651–663 (1963)

    Article  Google Scholar 

  15. Chen, L., Liang, X., Pei, Y.: The periodic solutions of the impulsive state feedback dynamical system. Commun. Math. Biol. Neurosci. (2018). https://doi.org/10.28919/cmbn/3754.14

  16. Connell McCluskey, C., Muldowney, J.S.: Bendixson–Dulac criteria for difference equations. J. Dyn. Differ. Equ. 10, 567–575 (1998)

    Article  MathSciNet  Google Scholar 

  17. Huang, M., Chen, L., Song, X.: Stability of a convex order one periodic solution of unilateral asymptotic type. Nonlinear Dyn. 90, 1–9 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (No. 11371164), NSFC-Talent Training Fund of Henan (U1304104), innovative talents of science and technology plan in Henan Province (15HASTIT014) and Key Scientic Research Project of High Education Institutions of Henan Province (17A110026).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhao, Z. Mathematical model for continuous delayed single-species population with impulsive state feedback control. J. Appl. Math. Comput. 61, 451–460 (2019). https://doi.org/10.1007/s12190-019-01253-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01253-2

Keywords

Mathematics Subject Classification

Navigation