Skip to main content
Log in

The existence of solutions for mixed fractional resonant boundary value problem with p(t)-Laplacian operator

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the following mixed fractional resonant boundary value problem with p(t)-Laplacian operator

$$\begin{aligned} \left\{ \begin{array}{lll} ^{C} D^{\beta }_{0^{+}}\varphi _{p(t)}(D^{\alpha }_{0^{+}}u(t))=f(t, u(t), D^{\alpha }_{0^{+}}u(t)),~~t\in [0, T],\\ t^{1-\alpha }u(t)\mid _{t=0}=0,~~D^{\alpha }_{0^{+}}u(0)=D^{\alpha }_{0^{+}}u(T), \end{array}\right. \end{aligned}$$

where \(^{C} D^{\beta }_{0^{+}}\) is Caputo fractional derivative, \(D^{\alpha }_{0^{+}}\) is Riemann–Liouville fractional derivative, \(\varphi _{p(t)}\) is p(t)-Laplacian operator, \(p(t)>1\), \(p(t)\in C^{1}[0, T]\) with \(p(0)=p(T)\). Under the appropriate conditions of the nonlinear term, the existence of solutions for the above mixed fractional resonant boundary value problem is obtained by using the continuation theorem of coincidence degree theory, which enrich the existing literatures. In addition, an example is included to demonstrate the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leibnitz, G.W.: Letter from Hanover, Germany, September 30, 1695, to G. A L’Hospital, Leibnizen Mathematische Schriften, Olms, Hildesheim, Germany (1849)

    Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Kibas, A.A., Anatoly, A.: Srivasfava, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science BV, Amsterdam (2006)

    Google Scholar 

  4. Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  5. Bai, Z., Lu, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  Google Scholar 

  6. Agarwal, R.P., O’Regan, D., Stanek, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57–68 (2010)

    Article  MathSciNet  Google Scholar 

  7. Wei, Z., Dong, W., Che, J.: Periodic boundary value problems for fractional differential equations involving a Riemann–Liouville fractional derivative. Nonlinear Anal. TMA 73, 3232–3238 (2010)

    Article  MathSciNet  Google Scholar 

  8. Jin, H., Liu, W.: On the periodic boundary value problem for Duffing type fractional differential equation with p-Laplacian operator. Bound. Value Probl. 2015(1), 144 (2015)

    Article  MathSciNet  Google Scholar 

  9. Tang, X.: Existence and uniqueness of nontrivial solutions for eigenvalue boundary value problem of nonlinear fractional differential equation. Annali dell’Universita di Ferrara 60(2), 429–445 (2014)

    Article  MathSciNet  Google Scholar 

  10. Wang, G.: Twin iterative positive solutions of fractional q-difference Schrödinger equations. Appl. Math. Lett. 76, 103–109 (2018)

    Article  MathSciNet  Google Scholar 

  11. Ahmad, B., Nieto, J.J.: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009(708576), 11 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, X., Feng, M., Ge, W.: Existence result of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl. 353, 311–319 (2009)

    Article  MathSciNet  Google Scholar 

  13. Kosmatov, N.: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 135, 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Feng, M., Zhang, X., Ge, W.: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011(720702), 20 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Hu, Z., Liu, W., Chen, T.: Two-point boundary value problems for fractional differential equations at resonance. Bull. Malays. Math. Sci. Soc. 36(3), 747–755 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Tang, X., Yan, C., Liu, Q.: Existence of solutions of two-point boundary value problems for fractional p-Laplace differential equations at resonance. J. Appl. Math. Comput. 41(1–2), 119–131 (2013)

    Article  MathSciNet  Google Scholar 

  17. Tang, X.: Existence of solutions of four-point boundary value problems for fractional differential equations at resonance. J. Appl. Math. Comput. 51(1–2), 145–160 (2016)

    Article  MathSciNet  Google Scholar 

  18. Jiang, W., Kosmatov, N.: Resonant p-Laplacian problems with functional boundary conditions. Bound. Value Probl. 2018(1), 72 (2018)

    Article  MathSciNet  Google Scholar 

  19. Li, P., Feng, M.: Denumerably many positive solutions for a n-dimensional higher-order singular fractional differential system. Adv. Differ. Equ. 2018(145), 26 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Ru̇žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics. Springer, Berlin (2000)

    Book  Google Scholar 

  21. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  22. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986). (Russian)

    MathSciNet  Google Scholar 

  23. Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306–317 (2005)

    Article  MathSciNet  Google Scholar 

  24. Shen, T., Liu, W.: Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator. J. Nonlinear Sci. Appl. 9, 5000–5010 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Q., Wang, Y., Qiu, Z.: Existence of solutions and boundary asymptotic behavior of p(r)-Laplacian equation multi-point boundary value problems. Nonlinear Anal. 72, 2950–2973 (2010)

    Article  MathSciNet  Google Scholar 

  26. Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1979)

    Book  Google Scholar 

  27. Bai, C.: Impulsive periodic boundary value problems for fractional differential equation involving Riemann–Liouville sequential fractional derivative. J. Math. Anal. Appl. 384, 211–231 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and suggestions on improving the presentation of this paper. The work is supported by the Natural Science Foundation of China (No. 11761038, No. 11761039), the Science and Technology Project of Department of Education of Jiangxi Province (No. GJJ180583) and Natural Science Foundation of Jiangxi Province of China (No. 20171BAB202010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Wang, X., Wang, Z. et al. The existence of solutions for mixed fractional resonant boundary value problem with p(t)-Laplacian operator. J. Appl. Math. Comput. 61, 559–572 (2019). https://doi.org/10.1007/s12190-019-01264-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01264-z

Keywords

Mathematics Subject Classification

Navigation