Skip to main content
Log in

Stability region of fractional differential systems with Prabhakar derivative

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper analyzes the stability of fractional differential equations with Prabhakar derivative, which is a generalization of the fractional differential equation with Caputo and Riemann-Liouville derivative. As a result, the sufficient condition for asymptotic stability has been obtained by studying the eigenvalues of system related matrix and the position of these eigenvalues in the complex plane. To show the application of the results a two-dimensional predator–prey model has been studied with Prabhakar derivative and the dynamic behavior has been extracted. Then, a numerical method along with its error has been presented for solving differential equations with Prabhakar derivative. The predator–prey model simulation has been conducted by using this numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alidousti, J., Ghaziani, R.K., et al.: Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann–Liouville derivatives. Turk. J. Math. 41(5), 1260–1278 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alidousti, J., Ghaziani, R.K.: Spiking and bursting of a fractional order of the modified FitzHugh–Nagumo neuron model. Math. Models Comput. Simul. 9(3), 390–403 (2017)

    Article  MathSciNet  Google Scholar 

  3. Babiarz, A., et al.: Theory and Applications of Non Integer Order Systems. Lecture Notes Electrical Engineering, vol. 407 (2017)

  4. Bonnet, C., Partington, J.R.: Coprime factorizations and stability of fractional differential systems. Syst. Control Lett. 41, 167 (2000)

    Article  MathSciNet  Google Scholar 

  5. Cermak, J., Hornicek, J., Kisela, T.: Stability regions for fractional differential systems with a time delay. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 108–123 (2016)

    Article  MathSciNet  Google Scholar 

  6. Deng, W.H., Li, C.P., Lu, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409 (2007)

    Article  MathSciNet  Google Scholar 

  7. Deng, W.H.: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal. 72, 1768 (2010)

    Article  MathSciNet  Google Scholar 

  8. Derakhshan, M.H., et al.: On asymptotic stability of Prabhakar fractional differential systems. Comput. Methods Differ. Equ. 4(4), 276–284 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  10. Giusti, A.: A comment on some new definitions of fractional derivative. Nonlinear Dyn. 93, 1757–1763 (2018)

    Article  Google Scholar 

  11. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201 (2002)

    Article  MathSciNet  Google Scholar 

  13. Hilfer, R.: Fractional calculus and regular variation in thermodynamics. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics, vol. 429. World Scientific, Singapore (2000)

    Chapter  Google Scholar 

  14. Hilfer, R.: Threefold introduction to fractional derivatives. In: Anomalous Transport: Foundations and Applications, pp. 17–73 (2008)

  15. Khoshsiar, R., Alidousti, J., Bayati, A.: Stability and dynamics of a fractional order Leslie–Gower prey–predator model. Appl. Math. Model. 40, 2075–2086 (2016)

    Article  MathSciNet  Google Scholar 

  16. Khoshsiar Ghaziani, R., Alidousti, J.: Stability analysis of a fractional order prey–predator system with nonmonotonic functional response. Comput. Methods Differ. Equ. 4(2), 151–161 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag Leffler function and generalized fractional calculus operators. Integral Transform Spec. Funct. 15(1), 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965 (2009)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810 (2010)

    Article  MathSciNet  Google Scholar 

  20. Magin, R.L.: Fractional calculus in bioengineering—part 2. Crit. Rev. Biomed. Eng. 32(2), 105–193 (2004)

    Article  Google Scholar 

  21. Matignon, D.: In: Proceedings of IMACS-SMC, vol. 2, p. 963. France, Lille (1996)

  22. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    MATH  Google Scholar 

  23. Prabhakar, T.R.: A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  24. Qian, D., Li, C., Agarwal, R.P., Wong, P.J.Y.: Stability analysis of fractional differential system with Riemann–Liouville derivative. Math. Comput. Model. 52(5–6), 862–874 (2010)

    Article  MathSciNet  Google Scholar 

  25. Radwan, A.G., Soliman, A.M., Elwakil, A.S., et al.: On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40, 2317 (2009)

    Article  Google Scholar 

  26. Rivero, M., Trujillo, J.J., Vazquez, L., Velasco, M.P.: Fractional dynamics of populations. Appl. Math. Comput. 218, 1089–1095 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Shantanu, D.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2007)

    MATH  Google Scholar 

  28. Srivastava, H.M., Tomovski, Ẑ.: Fractional calculus with an integral operator containing a generalized Mittag leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Tomovski, Z., Hilfer, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag Leffler type functions. Integral Transforms Spec. Funct. 21(11), 797–814 (2010)

    Article  MathSciNet  Google Scholar 

  30. Trigeassou, J.C., Maamri, N.: In: 6th International Multi-conference on Systems, Signals and Devices (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Alidousti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alidousti, J. Stability region of fractional differential systems with Prabhakar derivative. J. Appl. Math. Comput. 62, 135–155 (2020). https://doi.org/10.1007/s12190-019-01277-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01277-8

Keywords

Mathematics Subject Classification

Navigation