Skip to main content
Log in

An explicit formula and forbidden set for a higher order difference equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we determine the forbidden set, introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equation

$$\begin{aligned} x_{n+1}=\frac{ax_{n}x_{n-k+1}}{ bx_{n-k+1}+ cx_{n-k}},\quad n=0,1,\ldots , \end{aligned}$$

where abc are positive real numbers, the initial conditions \( x_{-k}, x_{-k+1},\ldots ,x_{-1},x_0\) are real numbers and k is a positive integer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Zeid, R.: On a fourth order rational difference equation. Tbilisi Math. J. 12(4), 71–79 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Abo-Zeid, R.: Global behavior of two third order rational difference equations with quadratic terms. Math. Slovaca 69(1), 147–158 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Abo-Zeid, R.: On the solutions of a higher order difference equation. Georgian Math. J. (2010). https://doi.org/10.1515/gmj-2018-0008

    MATH  Google Scholar 

  4. Abo-Zeid, R.: Forbidden set and solutions of a higher order difference equation. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 25, 75–84 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Abo-Zeid, R.: Global behavior of a higher order rational difference equation. Filomat 30(12), 3265–3276 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Abo-Zeid, R.: Global behavior of a third order rational difference equation. Math. Bohem. 139(1), 25–37 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Abo-Zeid, R.: Global behavior of a rational difference equation with quadratic term. Math. Moravica 18(1), 81–88 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Abo-Zeid, R.: Global behavior of a higher order difference equation. Math. Slovaca 64(4), 931–940 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Agarwal, R.P.: Difference Equations and Inequalities, 1st edn. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  10. Berenhaut, K.S., Foley, J.D., Stevic, S.: The global attractivity of the rational difference equation \(y_{n+1}=\frac{y_{n-k}+y_{n-m}}{1+y_{n-k}y_{n-m}}\). Appl. Math. Lett. 20(1), 54–58 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC, Boca Raton (2008)

    MATH  Google Scholar 

  12. Camouzis, E., Ladas, G., Rodrigues, I.W., Northshield, S.: On the rational recursive sequence \(x_{n+1}=\frac{\gamma x_{n}^2}{1+x_{n-1}^2}\). Comput. Math. Appl. 28(1–3), 37–43 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Elsayed, E.M.: On the solution of some difference equations. Eur. J. Pure Appl. Math. 4, 287–303 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC, Boca Raton (2005)

    MATH  Google Scholar 

  15. Gumus, M., Abo-Zeid, R.: On the solutions of a (2k+2)th order difference equation. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 25, 129–143 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Gumus, M., Ocalan, O.: The qualitative analysis of a rational system of diffrence equations. J. Fract. Calc. Appl. 9(2), 113–126 (2018)

    MathSciNet  Google Scholar 

  17. Gumus, M.: The global asymptotic stability of a system of difference equations. J. Difference Equ. Appl. (2018). https://doi.org/10.1080/10236198.2018.1443445

    MathSciNet  MATH  Google Scholar 

  18. Ibrahim, T.F.: On the third order rational difference equation \(x_{n+1}=\frac{x_{n}x_{n-2}}{a+bx_{n}x_{n-2}}\). Int. J. Contemp. Math. Sci. 4, 1321–1334 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Ibrahim, T.F.: Solvability and attractivity of the solutions of a rational difference equation. J. Pure Appl. Math. Adv. Appl. 2, 227–237 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Karakostas, G.: Convergence of a difference equation via the full limiting sequences method. Diff. Eq. Dyn. Sys. 1(4), 289–294 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  22. Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC, Boca Raton (2002)

    MATH  Google Scholar 

  23. H. Levy and F. Lessman, Finite Difference Equations, Dover, New York (1992)

  24. Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms. J. Difference Equ. Appl. 15(3), 15–224 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Sedaghat, H.: On third order rational equations with quadratic terms. J. Difference Equ. Appl. 14(8), 889–897 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Sedaghat, H.: Nonlinear difference equations theory with applications to social science models. Springer, New York (2003)

    MATH  Google Scholar 

  27. Stević, S.: On the difference equation \(x_{n}=\frac{x_{n-k}}{b+cx_{n-1}\cdots x_{n-k}}\). Appl. Math. Comput. 218(11), 6291–6296 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Stević, S.: On the difference equation \(x_{n}=\frac{x_{n-2}}{b_n+c_nx_{n} x_{n-2}}\). Appl. Math. Comput. 218(8), 4507–4513 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Stević, S.: On positive solutions of a (k +1)th order difference equation. Appl. Math. Let. 19(5), 427–431 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Stević, S.: More on a rational recurrence relation. Appl. Math. E-Notes 4, 80–84 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gümüş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümüş, M., Abo-Zeid, R. An explicit formula and forbidden set for a higher order difference equation. J. Appl. Math. Comput. 63, 133–142 (2020). https://doi.org/10.1007/s12190-019-01311-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01311-9

Keywords

Mathematics Subject Classification