Skip to main content
Log in

Properties of a novel stochastic rock–paper–scissors dynamics

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with some stochastic properties of a novel rock–paper–scissors model. Firstly, the global existence of an unique positive solution of the stochastic model is obtained. Then we demonstrate the positive solution of the model is stochastically bounded. Besides, some sufficient conditions for population to be stochastically permanent and extinct are derived with the use of some appropriate Lyapunov functions. At last, some numerical simulations are carried out to illustrate our theoretical analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  2. Neumann, G., Schuster, S.: Continuous model for the rock–scissors–paper game between bacteriocin producing bacteria. J. Math. Biol. 54, 815–846 (2007)

    Article  MathSciNet  Google Scholar 

  3. Zhang, D.X., Ping, Y.: Multiple limit cycles for the continuous model of the rock–scissors–paper game between bacteriocin producing bacteria. Appl. Math. Comput. 295, 136–140 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Reichenbach, T., Mobilia, M., Frey, E.: Coexistence versus extinction in the stochastic cyclic Lotka–Volterra model. Phys. Rev. E 74, 051907 (2006)

    Article  MathSciNet  Google Scholar 

  5. West, R., Mobilia, M., Rucklidge, A.M.: Survival behavior in the cyclic Lotka–Volterra model with a randomly switching. Phys. Rev. E 97, 022406 (2018)

    Article  Google Scholar 

  6. Mobilia, M.: Oscillatory dynamics in rock–paper–scissors games with mutations. J. Theor. Biol. 264(1), 1–10 (2010)

    Article  MathSciNet  Google Scholar 

  7. Postlethaite, C.M., Rucklidge, A.M.: Spirals and heteroclinic cycles in a spatially extended rock–raper–scissors model of cyclic dominance. Europhys. Lett. 117, 48006 (2017)

    Article  Google Scholar 

  8. Park, J.: Nonlinear dynamics with Hopf bifurcations by targeted mutation in the system of rock–paper–scissors metaphor. Chaos 29(3), 033102 (2019)

    Article  MathSciNet  Google Scholar 

  9. Semmann, D., Krambeck, H.J., Milinski, M.: Volunteering leads to rock–paper–scissors dynamics in a public goods game. Nature 425, 390–393 (2003)

    Article  Google Scholar 

  10. Wang, Z.J., Xu, B., Zhou, H.J.: Social cycling and conditional responses in the rock–paper–scissors game. Sci. Rep. 4, 5830 (2014)

    Article  Google Scholar 

  11. Ballantine, W.J., Langlois, T.J.: Marine reserves: the need for systems. Hydrobiologia 606, 35–44 (2008)

    Article  Google Scholar 

  12. Ballantine, B.: Fifty years on: lessons from marine reserves in New Zealand and principles for a worldwide network. Biol. Conserv. 176, 297–307 (2014)

    Article  Google Scholar 

  13. Williamson, J.E., Rees, A.: Nutritional interaction in an alga-barnacle association. Oecologia 99(1–2), 16–20 (1994)

    Article  Google Scholar 

  14. Luckens, P.A.: Competition and intertidal zonation of barnacles at Leigh, New Zealand. N. Z. J. Mar. Freshw. 9(3), 379–394 (1975)

    Article  Google Scholar 

  15. Novak, M.: Estimating interaction strengths in nature: experimental support for an observational approach. Ecology 91(8), 2394–2405 (2010)

    Article  Google Scholar 

  16. Gard, T.C.: Persistence in stochastic food web models. Bull. Math. Biol. 46(3), 357–370 (1984)

    Article  MathSciNet  Google Scholar 

  17. Gard, T.C.: Stability for multispecies population models in random environments. Nonlinear Anal. 10(12), 1411–1419 (1986)

    Article  MathSciNet  Google Scholar 

  18. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  19. Mao, X.R.: Stochastic Differential Equations and Applications. Horwood press, Chichester (2008)

    Book  Google Scholar 

  20. Liu, M., Wang, K.: Global stability of a nonlinear stochastic predator–prey system with Beddington–DeAngelis functional response. Commun. Nonlinear Sci. Numer. Simul. 16, 1114–1121 (2011)

    Article  MathSciNet  Google Scholar 

  21. Tan, R.H., Liu, Z.J., Guo, S.L., Xiang, H.L.: On a nonautonomous competitive system subject to stochastic and impulsive perturbations. Appl. Math. Comput. 256, 702–714 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Li, X.Y., Gray, A., Jiang, D.Q., Mao, X.R.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ma, Y.G., Zhang, Q.M.: Stationary distribution and extinction of a three-species food chain stochastic model. Trans. A. Razmadze Math. Inst. 172, 251–264 (2018)

    Article  MathSciNet  Google Scholar 

  24. Zhao, Y.N., Jiang, D.Q.: The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243, 718–727 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Li, Z.X., Mu, Y., Xiang, H.L., Wang, H.L.: Mean persistence and extinction for a novel stochastic turbidostat model. Nonlinear Dyn. 97(1), 185–202 (2019)

    Article  Google Scholar 

  26. Li, X.Y., Mao, X.R.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst. Ser. A 24(2), 523–593 (2009)

    Article  MathSciNet  Google Scholar 

  27. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. Soc. Ind. Appl. Math. 43(3), 525–546 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the editors and referees for their careful reading and valuable comments that lead to significant improvement of the paper. The work is supported by the National Natural Science Foundation of China (Nos. 11701163, 11561022 and 61703150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Z., Wang, H., Li, Z. et al. Properties of a novel stochastic rock–paper–scissors dynamics. J. Appl. Math. Comput. 63, 341–359 (2020). https://doi.org/10.1007/s12190-020-01320-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01320-z

Keywords

Mathematics Subject Classification

Navigation