Skip to main content
Log in

On q-Newton’s method for unconstrained multiobjective optimization problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a method of so-called q-Newton’s type descent direction for solving unconstrained multiobjective optimization problems. The algorithm presented in this paper is implemented by applying an independent parameter q (quantum) in an Armijo-like rule to compute the step length which guarantees that the value of the objective function decreases at every iteration. The search processes gradually shift from global in the beginning to local as the algorithm converges due to q-gradient. The algorithm is experimented on 41 benchmark/test functions which are unimodal and multi-modal with 1, 2, 3, 4, 5, 10 and 50 different dimensions. The performance of the proposed method is confirmed by comparing with three existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economy and Mathematical Systems. Springer, New York (1989)

    Book  Google Scholar 

  2. Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization. Springer, Berlin (1990)

    Book  Google Scholar 

  3. Kasperska, R., Ostwald, M., Rodak, M.: Bi-criteria optimization of open cross section of the thin-walled beams with flat flanges. Proc. Appl. Math. Mech. 4, 614–615 (2004)

    Article  Google Scholar 

  4. Jüschke, A., Jahn, J., Kirsch, A.: A bicriterial optimization problem of antenna design. Comput. Optim. Appl. 7, 261–276 (1997)

    Article  MathSciNet  Google Scholar 

  5. Fu, Y., Diwekar, U.M.: An efficient sampling approach to multiobjective optimization. Ann. Oper. Res. 132, 109–134 (2004)

    Article  Google Scholar 

  6. Shan, S., Wang, G.G.: An efficient pareto set identification approach for multiobjective optimization on black-box functions. J. Mech. Design 127, 866–874 (2005)

    Article  Google Scholar 

  7. Carrizosa, E., Conde, E., Mum̃oz-Màrquez, M., Puerto, J.: Planar point-objective location problems with nonconvex constraints: a geometrical construction. J. Glob. Optim. 6, 77–86 (1995)

    Article  MathSciNet  Google Scholar 

  8. Carrizosa, E., Frenk, J.B.G.: Dominating sets for convex functions with some applications. J. Optim. Theory Appl. 96, 281–295 (1998)

    Article  MathSciNet  Google Scholar 

  9. Kiran, K.L., Lakshminarayanan, S.: Treatment planning of cancer dendritic cell therapy using multi-objective optimization. IFAC Proc. Vol. 42, 109–116 (2009)

    Article  Google Scholar 

  10. Petrovski, A., McCall, J., Sudha, B.: Multi-objective optimization of cancer chemotherapy using swarm intelligence. In: Taylor, N.K. (ed.) AISB Symposium on Adaptive and Emergent Behaviour and Complex Systems. UK Society for AI (2009)

  11. Kiran, K.L., Jayachandran, D., Lakshminarayanan, S.: Multi-objective optimization of cancer immuno-chemotherapy. In: Lim, C.T., Goh, J.C.H. (eds.) 13th Int. Conf. Biomed. Eng., pp. 1337–1340. Springer, Singapore (2009)

    Chapter  Google Scholar 

  12. Baesler, F.F., Sepúlveda, J.A.: Multi-objective simulation optimization for a cancer treatment center. In: Proceeding of Winter Simulation Conference, pp. 1401–1404. IEEE, USA (2001)

  13. Qu, S.J., Liu, C., Goh, M.: Nonsmooth multiobjective programming with quasi-Newton methods. Eur. J. Oper. Res. 235, 503–510 (2014)

    Article  MathSciNet  Google Scholar 

  14. Qu, S.J., Goh, M., Wu, S.Y.: Multiobjective DC programs with infinite convex constraints. J. Glob. Optim. 59, 41–58 (2014)

    Article  MathSciNet  Google Scholar 

  15. Qu, S.J., Zhou, Y.Y., Zhang, Y.L., Wahab, M.I.M., Zhang, G., Ye, Y.Y.: Optimal strategy for a green supply chain considering shipping policy and default risk. Comput. Ind. Eng. 131, 172–186 (2019)

    Article  Google Scholar 

  16. Huang, R., Qu, S., Yang, X., Liu, Z.: Multi-stage distributionally robust optimization with risk aversion. J. Ind. Manag. Optim. (2019). https://doi.org/10.3934/jimo.2019109

    Article  Google Scholar 

  17. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MathSciNet  Google Scholar 

  18. Jahn, J.: Scalarization in vector optimization. Math. Program 29, 203–218 (1984)

    Article  MathSciNet  Google Scholar 

  19. Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55, 85–102 (1987)

    Article  MathSciNet  Google Scholar 

  20. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. J. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MathSciNet  Google Scholar 

  21. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)

    MATH  Google Scholar 

  22. Drummond, L.M.G., Maculan, N., Svaiter, B.: On the choice of parameters for the weighting method in vector optimization. Math. Program 111, 201–216 (2008)

    Article  MathSciNet  Google Scholar 

  23. Jackson, F.H.: On \(q\)-functions and a certain difference operator. Trans. Roy. Soc. Edinburg. 46, 253–281 (1909)

    Article  Google Scholar 

  24. Ernst, T.: The history of \(q\)-calculus and a new method (Licentiate Thesis). U.U.D.M, Report (2000). http://www.math.uu.se/thomas/Lics.pdf

  25. Jackson, F.H.: On \(q\)-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  26. Ernst, T.: A method for \(q\)-calculus. J. Nonlinear Math. Phys. 10, 487–525 (2003)

    Article  MathSciNet  Google Scholar 

  27. Rajković, P.M., Marinković, S.D., Stanković, M.S.: On \(q\)-Newton–Kantorovich method for solving systems of equations. Appl. Math. Comput. 168, 1432–1448 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Sterroni, A.C., Galski, R.L., Ramos, F.M.: The \(q\)-gradient vector for unconstrained continuous optimization problems. In: Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds.) Oper. Res. Proc., pp. 365–370. Springer, Heidelberg (2010)

    Google Scholar 

  29. Gouvêa, E.J.C., Regis, R.G., Soterroni, A.C., Scarabello, M.C., Ramos, F.M.: Global optimization using \(q\)-gradients. Eur. J. Oper. Res. 251, 727–738 (2016)

    Article  MathSciNet  Google Scholar 

  30. Al-Saggaf, U.M., Moinuddin, M., Arif, M., Zerguine, A.: The \(q\)-least mean squares algorithm. Signal Process. 111, 50–60 (2015)

    Article  Google Scholar 

  31. Chakraborty, S.K., Panda, G.: Newton like line search method using \(q\)-calculus. International Conference on Mathematics and Computing. In: Giri, D., Mohapatra, R.N., Begehr, H., Obaidat, M. (eds.) Communications in Computer and Information Science 655, pp. 196–208. Springer, Singapore (2017)

  32. Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20, 602–626 (2009)

    Article  MathSciNet  Google Scholar 

  33. Drummond, L.M.G., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175, 395–414 (2005)

    Article  MathSciNet  Google Scholar 

  34. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000)

    Article  MathSciNet  Google Scholar 

  35. Ansary, M.A.T., Panda, G.: A modified quasi-Newton method for vector optimization problem. Optimization 64, 2289–2306 (2015)

    Article  MathSciNet  Google Scholar 

  36. Schnabel, R.B., Eskow, E.: A revised modified cholesky factorization algorithm. SIAM J. Optim. 9, 1135–1148 (1999)

    Article  MathSciNet  Google Scholar 

  37. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE T. Evolut. Comput. 10, 477–50 (2006)

    Article  Google Scholar 

  38. Qu, S., Goh, M., Chan, F.T.S.: Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39, 397–399 (2011)

    Article  MathSciNet  Google Scholar 

  39. Povalej, Ž.: Quasi-Newton’s method for multiobjective optimization. J. Comput. Appl. Math. 255, 765–777 (2014)

    Article  MathSciNet  Google Scholar 

  40. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating pareto optimal points in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  41. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19, 1694–1718 (2009)

    Article  MathSciNet  Google Scholar 

  42. Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Springer, Basel (2001)

    Book  Google Scholar 

  43. Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?. In: Spector, L. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference. pp. 1042–1049, Morgan Kaufmann Publishers, United States (2001)

  44. Kim, I.Y., de Weck, O.L.: Adaptive weighted sum method for bi-objective optimization. Struct. Multidiscip. O. 29, 149–158 (2005)

    Article  Google Scholar 

  45. Lovison, A.: A synthetic approach to multiobjective optimization (2010). arXiv:1002.0093

  46. Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson, T.P., Beyer, H.G., Burke, E., Guervós, J.J.M., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN IX, pp. 513–522. Springer, Berlin (2006)

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to the editors and anonymous referees for their valuable comments and detailed suggestions which helped to improve the quality of this paper. This research was supported by the Science and Engineering Research Board (Grant No. DST-SERB-MTR-2018/000121) and the University Grants Commission (IN) (Grant No. UGC-2015-UTT–59235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwat Ram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Panda, G., Ansary, M.A.T. et al. On q-Newton’s method for unconstrained multiobjective optimization problems. J. Appl. Math. Comput. 63, 391–410 (2020). https://doi.org/10.1007/s12190-020-01322-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01322-x

Keywords

Mathematics Subject Classification