Abstract
In this paper, we present a method of so-called q-Newton’s type descent direction for solving unconstrained multiobjective optimization problems. The algorithm presented in this paper is implemented by applying an independent parameter q (quantum) in an Armijo-like rule to compute the step length which guarantees that the value of the objective function decreases at every iteration. The search processes gradually shift from global in the beginning to local as the algorithm converges due to q-gradient. The algorithm is experimented on 41 benchmark/test functions which are unimodal and multi-modal with 1, 2, 3, 4, 5, 10 and 50 different dimensions. The performance of the proposed method is confirmed by comparing with three existing schemes.

Similar content being viewed by others
References
Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economy and Mathematical Systems. Springer, New York (1989)
Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization. Springer, Berlin (1990)
Kasperska, R., Ostwald, M., Rodak, M.: Bi-criteria optimization of open cross section of the thin-walled beams with flat flanges. Proc. Appl. Math. Mech. 4, 614–615 (2004)
Jüschke, A., Jahn, J., Kirsch, A.: A bicriterial optimization problem of antenna design. Comput. Optim. Appl. 7, 261–276 (1997)
Fu, Y., Diwekar, U.M.: An efficient sampling approach to multiobjective optimization. Ann. Oper. Res. 132, 109–134 (2004)
Shan, S., Wang, G.G.: An efficient pareto set identification approach for multiobjective optimization on black-box functions. J. Mech. Design 127, 866–874 (2005)
Carrizosa, E., Conde, E., Mum̃oz-Màrquez, M., Puerto, J.: Planar point-objective location problems with nonconvex constraints: a geometrical construction. J. Glob. Optim. 6, 77–86 (1995)
Carrizosa, E., Frenk, J.B.G.: Dominating sets for convex functions with some applications. J. Optim. Theory Appl. 96, 281–295 (1998)
Kiran, K.L., Lakshminarayanan, S.: Treatment planning of cancer dendritic cell therapy using multi-objective optimization. IFAC Proc. Vol. 42, 109–116 (2009)
Petrovski, A., McCall, J., Sudha, B.: Multi-objective optimization of cancer chemotherapy using swarm intelligence. In: Taylor, N.K. (ed.) AISB Symposium on Adaptive and Emergent Behaviour and Complex Systems. UK Society for AI (2009)
Kiran, K.L., Jayachandran, D., Lakshminarayanan, S.: Multi-objective optimization of cancer immuno-chemotherapy. In: Lim, C.T., Goh, J.C.H. (eds.) 13th Int. Conf. Biomed. Eng., pp. 1337–1340. Springer, Singapore (2009)
Baesler, F.F., Sepúlveda, J.A.: Multi-objective simulation optimization for a cancer treatment center. In: Proceeding of Winter Simulation Conference, pp. 1401–1404. IEEE, USA (2001)
Qu, S.J., Liu, C., Goh, M.: Nonsmooth multiobjective programming with quasi-Newton methods. Eur. J. Oper. Res. 235, 503–510 (2014)
Qu, S.J., Goh, M., Wu, S.Y.: Multiobjective DC programs with infinite convex constraints. J. Glob. Optim. 59, 41–58 (2014)
Qu, S.J., Zhou, Y.Y., Zhang, Y.L., Wahab, M.I.M., Zhang, G., Ye, Y.Y.: Optimal strategy for a green supply chain considering shipping policy and default risk. Comput. Ind. Eng. 131, 172–186 (2019)
Huang, R., Qu, S., Yang, X., Liu, Z.: Multi-stage distributionally robust optimization with risk aversion. J. Ind. Manag. Optim. (2019). https://doi.org/10.3934/jimo.2019109
Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)
Jahn, J.: Scalarization in vector optimization. Math. Program 29, 203–218 (1984)
Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55, 85–102 (1987)
Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. J. Comput. Optim. Appl. 44, 249–273 (2009)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)
Drummond, L.M.G., Maculan, N., Svaiter, B.: On the choice of parameters for the weighting method in vector optimization. Math. Program 111, 201–216 (2008)
Jackson, F.H.: On \(q\)-functions and a certain difference operator. Trans. Roy. Soc. Edinburg. 46, 253–281 (1909)
Ernst, T.: The history of \(q\)-calculus and a new method (Licentiate Thesis). U.U.D.M, Report (2000). http://www.math.uu.se/thomas/Lics.pdf
Jackson, F.H.: On \(q\)-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)
Ernst, T.: A method for \(q\)-calculus. J. Nonlinear Math. Phys. 10, 487–525 (2003)
Rajković, P.M., Marinković, S.D., Stanković, M.S.: On \(q\)-Newton–Kantorovich method for solving systems of equations. Appl. Math. Comput. 168, 1432–1448 (2005)
Sterroni, A.C., Galski, R.L., Ramos, F.M.: The \(q\)-gradient vector for unconstrained continuous optimization problems. In: Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds.) Oper. Res. Proc., pp. 365–370. Springer, Heidelberg (2010)
Gouvêa, E.J.C., Regis, R.G., Soterroni, A.C., Scarabello, M.C., Ramos, F.M.: Global optimization using \(q\)-gradients. Eur. J. Oper. Res. 251, 727–738 (2016)
Al-Saggaf, U.M., Moinuddin, M., Arif, M., Zerguine, A.: The \(q\)-least mean squares algorithm. Signal Process. 111, 50–60 (2015)
Chakraborty, S.K., Panda, G.: Newton like line search method using \(q\)-calculus. International Conference on Mathematics and Computing. In: Giri, D., Mohapatra, R.N., Begehr, H., Obaidat, M. (eds.) Communications in Computer and Information Science 655, pp. 196–208. Springer, Singapore (2017)
Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20, 602–626 (2009)
Drummond, L.M.G., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175, 395–414 (2005)
Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000)
Ansary, M.A.T., Panda, G.: A modified quasi-Newton method for vector optimization problem. Optimization 64, 2289–2306 (2015)
Schnabel, R.B., Eskow, E.: A revised modified cholesky factorization algorithm. SIAM J. Optim. 9, 1135–1148 (1999)
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE T. Evolut. Comput. 10, 477–50 (2006)
Qu, S., Goh, M., Chan, F.T.S.: Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39, 397–399 (2011)
Povalej, Ž.: Quasi-Newton’s method for multiobjective optimization. J. Comput. Appl. Math. 255, 765–777 (2014)
Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating pareto optimal points in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)
Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19, 1694–1718 (2009)
Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Springer, Basel (2001)
Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?. In: Spector, L. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference. pp. 1042–1049, Morgan Kaufmann Publishers, United States (2001)
Kim, I.Y., de Weck, O.L.: Adaptive weighted sum method for bi-objective optimization. Struct. Multidiscip. O. 29, 149–158 (2005)
Lovison, A.: A synthetic approach to multiobjective optimization (2010). arXiv:1002.0093
Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson, T.P., Beyer, H.G., Burke, E., Guervós, J.J.M., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN IX, pp. 513–522. Springer, Berlin (2006)
Acknowledgements
We are grateful to the editors and anonymous referees for their valuable comments and detailed suggestions which helped to improve the quality of this paper. This research was supported by the Science and Engineering Research Board (Grant No. DST-SERB-MTR-2018/000121) and the University Grants Commission (IN) (Grant No. UGC-2015-UTT–59235).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mishra, S.K., Panda, G., Ansary, M.A.T. et al. On q-Newton’s method for unconstrained multiobjective optimization problems. J. Appl. Math. Comput. 63, 391–410 (2020). https://doi.org/10.1007/s12190-020-01322-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-020-01322-x