Skip to main content
Log in

Allee effect can simplify the dynamics of a prey-predator model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this work, we investigate a prey-predator model which includes the Allee effect phenomena in prey growth function, density dependent death rate for predators and ratio dependent functional response. we fulfill a comprehensive bifurcation analysis, constructing the two-parametric bifurcation diagrams which describes the effect of density dependent death rate parameter, and also show possible phase portraits. We have also investigated the model in the absence of Allee effect and corresponding bifurcation diagram has been presented to show the dynamical changes in the system. Then we compare the properties of the ratio dependent prey-predator model with and without the Allee effect and show that Allee effect has a significant role in the dynamics. Allee effect can preserve local extinction of populations and suppress the stability of interior equilibrium point. Finally, all the analytical results are validated with the help of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aguirree, P., Flores, J.D., Olivares, E.: Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey and a ratio-dependent functional response (2014)

  2. Allee, W.C.: Animal Aggregations. University of Chicago Press, Chicago (1931)

    Google Scholar 

  3. Angelis, D.: Dynamics of Nutrient Cycling and Food Webs. Chapman and Hall, London (1992)

    Google Scholar 

  4. Arditi, R., Perrin, N., Saiah, H.: Functional responses and heterogeneities: an experimental test with cladocerans. Oikos 60, 69–75 (1991)

    Google Scholar 

  5. Arditi, R., Ginzbur, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Google Scholar 

  6. Banerjee, M., Petrovskii, S.: Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theor. Ecol. 4, 37–53 (2011)

    Google Scholar 

  7. Bazykin, A.D., Khibnik, A.I., Krauskopf, B.: Nonlinear dynamics of interacting populations, Vol. 11 (World Scientific Publishing Company Incorporated) (1998)

  8. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol. 44, 331–340 (1975)

    Google Scholar 

  9. Beretta, E., Kuang, Y.: Global analyses in some delayed ratio-dependent predator prey systems. Nonlinear Anal. 32, 381–408 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Berezovskaya, F., Karev, G., Arditi, R.: Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol. 43, 221–246 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Canale, R.: Predator-prey relationships in a model for the activated process. Biotechnol. Bioeng. 11, 887–907 (1969)

    Google Scholar 

  12. Conway, E.D., Smoller, J.A.: Global analysis of a system of predator-prey equations. SIAM J. Appl. Math. 46, 630–642 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Courchamp, F., Clutton-brock, T., grenfell, B.: Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999)

    Google Scholar 

  14. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Google Scholar 

  15. Fan, Y.H., Li, W.T.: Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response. J. Math. Anal. Appl. 299(2), 357–374 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Freedman, H.: Stability analysis of a predator-prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979)

    MathSciNet  MATH  Google Scholar 

  17. Freedman, H.: Deterministic Mathematical Method in Population Ecology. Dekker, New York (1990)

    Google Scholar 

  18. Gonzalez-Olivares, E., Rojas-Palma, A.: Multiple limit cycles in a gause type predator-prey model with holling type III functional response and Allee effect on prey. Bull. Math. Biol. 73, 1378–1397 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Hanski, I.: The functional response of predators: worries about scale. Trends Ecol. Evol. 6, 141–142 (1991)

    Google Scholar 

  20. Haque, M.: Ratio-dependent predator-prey models of interacting populations. Bull. Math. Biol. 71, 430–452 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Hilker, F.: Population collapse to extinction: the catastrophic combination of parasitism and Allee effect. J. Biol. Dyn. 4, 86–100 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Hilker, F., Langlais, Malchow H: The Allee effect and infectious diseases: extinction, multistability and the disappearance of oscillations. Am. Nat. 173, 72–88 (2009)

    Google Scholar 

  23. Holling, C.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 1–60 (1965)

    Google Scholar 

  24. Hsu, S., Hwang, T., Kuang, Y.: Global analysis of the michaelis-menten type ratio-dependent predator-prey system. J. Math. Biol. 42, 489–506 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator-prey models. Bull. Math. Biol. 61, 19–32 (1999)

    MATH  Google Scholar 

  26. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  27. Garain, K., Mandal, P.S.: Bifurcation Analysis of a prey-predator model with Beddington-DeAngelis type functional response and Allee effect in prey, International Journal of Bifurcation and Chaos, 2018 (accepted)

  28. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    MATH  Google Scholar 

  30. Lotka, A.J.: A Natural Population Norm i and ii. Washington Academy of Sciences, Washington, DC (1913)

    Google Scholar 

  31. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, New Jersey (2001)

    MATH  Google Scholar 

  32. McGehee, E.A., Schutt, N., Vasquez, D.A., Peacock-Lopez, E.: Bifurcations, and temporal and spatial patterns of a modified lotka-volterra model. Int. J. Bifurc. Chaos 18, 2223–2248 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Morozov, A., Petrovskii, S., Li, B.L.: Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J. Theor. Biol. 238, 18–35 (2006)

    MathSciNet  Google Scholar 

  34. Pablo, A., Flores, J.D., Gonzalez-Olivares, E.: Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey and a ratio-dependent functional response. Nonlinear Anal. Real World Appl. 16, 235–249 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Pal, P.J., Saha, T.: Dynamical complexity of a ratio-dependent predator-prey model with strong additive Allee effect. Appl. Math. 146, 287–298 (2015)

    MathSciNet  Google Scholar 

  36. Pal, P.J., Saha, T., Sen, M., Banerjee, M.: A delayed predator-prey model with strong Allee effect in prey population growth. Nonlinear Dyn. 68, 23–42 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)

    MATH  Google Scholar 

  38. Sen, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect. Ecol. Complex. 11, 12–27 (2012)

    Google Scholar 

  39. Sen, M., Banerjee, M.: Rich global dynamics in a prey-predator model with Allee effect and density dependent death rate of predator. Int. J. Bifurc. Chaos 25, 10 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Stephens, P., Sutherland, W.: Consequences of the Allee effect for behavior, ecology and conservation. trends in ecology and evolutionl. Electron. J. Differ. Equ. 14, 401–405 (1999)

    Google Scholar 

  41. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    MATH  Google Scholar 

  42. Voorn, G., Hemerik, L., Boer, M., Kooi, B.: Heteroclinic orbits indicate over exploitation in predator-prey systems with a strong Allee effect. Math. Biosci. 209, 451–469 (2001)

    MATH  Google Scholar 

  43. Wnng, L., Li, W.T.: Periodic solutions and permanence for a delayed nonautonomous ratiodependent predator-prey model with Holling type functional response. J. Comput. Appl. Math. 162(2), 341–357 (2004)

    MathSciNet  Google Scholar 

  44. Wang, M., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171, 83–97 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system. J. Math. Biol. 43, 268–290 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Partha Sarathi Mandal and Koushik Garain’s research are supported by SERB, DST project [grant: YSS/2015/001548]. Udai Kumar and Rakhi Sharma are supported by fellowship from MHRD, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Garain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix 1

Transversality conditions for saddle-node bifurcation: Let V and W be the eigenvectors of \(J_{E^{*}_{SN}}\) and \(\left[ J_{E^{*}_{SN}}\right] ^{T}\) corresponding to zero eigenvalue respectively.

$$\begin{aligned} V= \left[ \begin{array}{cc} v_{1} \\ v_{2} \end{array}\right] ,\ W= \left[ \begin{array}{cc} w_{1} \\ w_{2} \end{array}\right] . \end{aligned}$$

Then V should satisfy the following matrix equation

$$\begin{aligned} \left[ \begin{array}{cc} T_{11}(u_{sn*}, v_{sn*})-a_{22}(u_{sn*}, v_{sn*}) &{} -a_{12}(u_{sn*}, v_{sn*}) \\ a_{22}(u_{sn*}, v_{sn*}) &{} a_{12}(u_{sn*}, v_{sn*})-D-2E_{SN}v_{sn*} \end{array}\right] \left[ \begin{array}{cc} v_{1} \\ v_{2} \end{array}\right] =\left[ \begin{array}{cc} 0 \\ 0 \end{array}\right] , \end{aligned}$$

where \( T_{11}(u_{sn*}, v_{sn*})=(1-u_{sn*})(\frac{u_{sn*}}{A}-1)-u_{sn*}(\frac{u_{sn*}}{A}-1)+\frac{u_{sn*}}{A}(1-u_{sn*})\), \( a_{12}(u_{sn*}, v_{sn*}) =\frac{Bu_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^2}\), \( a_{22}(u_{sn*}, v_{sn*})=\frac{2BCu_{sn*}v_{sn*}^3}{(u_{sn*}^2+Cv_{sn*}^2)^2}\). Multiplying the second row by \(T_{11}-a_{22}\), first row by \(a_{22}\) and substracting the first row from above matrix, we get

$$\begin{aligned} \left[ \begin{array}{cccccc} T_{11}(u_{sn*}, v_{sn*}){-}a_{22}(u_{sn*}, v_{sn*}) &{} -a_{12}(u_{sn*}, v_{sn*}) \\ 0&{} (T_{11}(u_{sn*}, v_{sn*})\\ &{} -a_{22}(u_{sn*}, v_{sn*}))(a_{12}(u_{sn*}, v_{sn*})\\ &{} -D-2E_{SN}v_{sn*})\\ &{}+a_{12}(u_{sn*}, v_{sn*})a_{22}(u_{sn*}, v_{sn*}) \end{array}\right] \left[ \begin{array}{cc} v_{1} \\ v_{2} \end{array}\right] =\left[ \begin{array}{cc} 0 \\ 0 \end{array}\right] . \end{aligned}$$

To get the eigenvector the term \((T_{11}(u_{sn*}, v_{sn*})-a_{22}(u_{sn*}, v_{sn*}))(a_{12}(u_{sn*}, v_{sn*})-D-2E_{SN}v_{sn*})+a_{12}(u_{sn*}, v_{sn*})a_{22}(u_{sn*}, v_{sn*})=0\), which implies

$$\begin{aligned} (a_{12}(u_{sn*}, v_{sn*})-D-2E_{SN}v_{sn*})=-\frac{a_{22(D-2E_{SN}v_{sn*})}}{T_{11}(u_{sn*}, v_{sn*})} \end{aligned}$$
(11)

and from above matrix equation, we have

$$\begin{aligned} a_{22}(u_{sn*}, v_{sn*})v_{1}+(a_{12}(u_{sn*}, v_{sn*})-D-2E_{SN}v_{sn*})v_{2}=0. \end{aligned}$$
(12)

Using Eqs. (11) and (12), we get

$$\begin{aligned} V=\Big [1,\frac{T_{11}(u_{sn*}, v_{sn*})}{D+2E_{SN}v_{sn*}} \Big ]^T. \end{aligned}$$

Proceeding in a similar way the eigenvector of \([J_{E_{SN}^{*}}]^{T}\) is given by,

$$\begin{aligned} W=\Big [-1,\frac{a_{12}(u_{sn*}, v_{sn*})T_{11}(u_{sn*}, v_{sn*})}{a_{22}(u_{sn*}, v_{sn*})(D+2E_{SN}v_{sn*})} \Big ]^T \end{aligned}$$

Let \(F(u,v)=(F_{1}(u,v),F_{2}(u,v))^{T}\). Then \(F_{E}(u,v)=(F_{1E}(u,v),F_{2E}(u,v))^{T}\). We can find from system (3)–(4), \(F_{1E} |_{(E_{SN}^{*};E_{SN})}=\frac{dF_{1}}{dE}|_{(E_{SN}^{*};E_{SN})}=0\) and \(F_{2E} |_{(E_{SN}^{*};E_{SN})}=\frac{dF_{2}}{dE}|_{(E_{SN}^{*};E_{SN})}=-v_{sn*}^2\) and the first transversality condition for saddle node bifurcation becomes

$$\begin{aligned} W^TF_{E}(u, v)\Big |_{[E_{SN}^{*};E_{SN}]}= & {} \left[ \begin{array}{cc} -1 &{} \frac{a_{12}(u_{sn*}, v_{sn*})T_{11}(u_{sn*}, v_{sn*})}{a_{22}(u_{sn*}, v_{sn*})(D+2E_{SN}v_{sn*})}\\ \end{array}\right] \left[ \begin{array}{cc} 0\\ -v_{sn*}^2 \end{array}\right] \\= & {} -v_{sn*}^2\frac{a_{12}(u_{sn*}, v_{sn*})T_{11}(u_{sn*}, v_{sn*})}{a_{22}(u_{sn*}, v_{sn*})(D+2E_{SN}v_{sn*})}. \end{aligned}$$

Now for second transversality condition,

\(D^2F(u,v)(V,V)=\displaystyle \sum _{i,j=1}^{2}\frac{\partial ^2F(u,v)}{\partial u_i \partial u_j}v_i v_j\), where \((u,v)=(u_1,u_2)\)(say). Then,

$$\begin{aligned} D^2 \left( \begin{array}{cc} F_1(u,v) \\ F_2(u,v) \\ \end{array} \right) (V,V)= & {} \left( \begin{array}{cc} \displaystyle \sum _{i,j=1}^{2}\frac{\partial ^2F_1(u,v)}{\partial u_i \partial u_j}v_i v_j \\ \displaystyle \sum _{i,j=1}^{2}\frac{\partial ^2F_2(u,v)}{\partial u_i \partial u_j}v_i v_j \\ \end{array} \right) \\= & {} \left( \begin{array}{cc} F_{1u_{1}^2}v_{1}^2+2F_{1u_1 u_2}v_1 v_2+F_{1u_{2}^2}v_{2}^2 \\ F_{2u_{1}^2}v_{1}^2+2F_{2u_1 u_2}v_1 v_2+F_{2u_{2}^2}v_{2}^2 \\ \end{array} \right) , \end{aligned}$$

where \(V=(v_{1},v_{2})^T\), \(F_{1u_iu_j}=\frac{\partial ^2F_1}{\partial u_i\partial u_j}\) for \(i,j=1,2\) and similarly for \(F_2\).

Using the equilibrium relation from Eq. (6), we get

$$\begin{aligned}&D^{2}F(E_{SN}^{*};E_{SN})(V,V)\\&\quad {=}\left( \begin{array}{cc} I_{0}{-}v_{sn*}^3S{+}2Su_{sn*}v_{sn*}^2\left( \frac{T_{11}(u_{sn*}, v_{sn*})}{D+2E_{SN}v_{sn*}}\right) -Su^2_{sn*}v_{sn*}\left( \frac{T_{11}(u_{sn*}, v_{sn*})}{D+2E_{SN}v_{sn*}}\right) ^2 \\ v_{sn*}^3S{-}2Su_{sn*}v_{sn*}^2\left( \frac{T_{11}(u_{sn*}, v_{sn*})}{D{+}2E_{SN}v_{sn*}}\right) +(Su^2_{sn*}v_{sn*}-2E_{SN})\left( \frac{T_{11}(u_{sn*}, v_{sn*})}{D+2E_{SN}v_{sn*}}\right) ^2 \end{array}\right) , \end{aligned}$$

where \(I_{0}=-\frac{6u_{sn*}}{A}+\frac{2(1+A)}{A}\), \(S=\frac{2BC(Cv_{sn*}^2-3u_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^3}\). We find the expression

$$\begin{aligned} W^{T}D^{2}&F&(E_{SN}^{*};E_{SN})(V,V)\\ =&I_{0}&+\frac{T_{11}Sv_{sn*}}{a_{22}(u_{sn*}, v_{sn*})}.\left[ \left( \frac{T_{11}(u_{sn*}, v_{sn*})}{D+2E_{SN}v_{sn*}}\right) u_{sn*}-v_{sn*}\right] ^2\nonumber \\- & {} \frac{2E_{SN}a_{12}(u_{sn*}, v_{sn*})}{a_{22}(u_{sn*}, v_{sn*})}\left( \frac{T_{11}(u_{sn*}, v_{sn*})}{D+2E_{SN}v_{sn*}}\right) ^3. \end{aligned}$$

B Appendix 2

We calculate the first lyapunov number for stability of Hopf-bifurcation.

We translate the equilibrium point \(E_{1*}(u_{1*}, v_{1*})\) to origin with new coordinate By setting \(x=u-u_{1*} , y=v-v_{1*}\). Then new system in coordinate (xy) has power series expansion as given below

$$\begin{aligned} {\dot{x}}= & {} ax+by+(a_{20}x^2+a_{11}xy+a_{02}y^2)+(a_{30}x^3+a_{12}x^2y+a_{21}xy^2)\nonumber \\&+Q_{1}(|x, y|^4),\nonumber \\ {\dot{y}}= & {} cx+dy+(b_{20}x^2+b_{11}xy+b_{02}y^2)+(b_{30}x^3+b_{21}x^2y+b_{12}xy^2)\nonumber \\&+ Q_{2}(|x, y|^4). \end{aligned}$$

Where

$$\begin{aligned} a= & {} \Big [\frac{\partial F_{1}(u, v)}{\partial u}\Big ] \Big |_{(E_{1*};B_{H})}=\frac{-3u_{1*}^2}{A}+2u_{1*}\left( \frac{1}{A}+1\right) -1-\frac{2B_{H}Cu_{1*}v_{1*}^3}{(u_{1*}^2+Cv_{1*}^2)^2},\\ b= & {} \Big [\frac{\partial F_{1}(u, v)}{\partial v}\Big ] \Big |_{(E_{1*};B_{H})}=-\frac{B_{H}u_{1*}^2(u_{1*}^2-Cv_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^2},\\ c= & {} \Big [\frac{\partial F_{2}(u, v)}{\partial u}\Big ] \Big |_{(E_{1*};B_{H})}= \frac{2B_{H}Cu_{1*}v_{1*}^3}{(u_{1*}^2+Cv_{1*}^2)^2},\\ d= & {} \Big [\frac{\partial F_{2}(u, v)}{\partial v}\Big ] \Big |_{(E_{1*};B_{H})}=\frac{B_{H}u_{1*}^2(u_{1*}^2-Cv_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^2}-D-2Ev_{1*},\\ a_{20}= & {} \frac{1}{2}\Big [\frac{\partial ^2 F_{1}(u, v)}{\partial u^2} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{-3u_{1*}}{A}+\left( \frac{1}{A}+1\right) -\frac{B_{H}Cv_{1*}^3(Cv_{1*}^2-3u_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^3}, \\ a_{11}= & {} \Big [\frac{\partial ^2 F_{1}(u, v)}{\partial u \partial v} \Big ]\Big |_{((E_{1*};B_{H})}=\frac{2B_{H}Cu_{1*}v_{1*}^2(Cv_{1*}^2-3u_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^3},\\ a_{02}= & {} \frac{1}{2}\Big [\frac{\partial ^2 F_{1}(u, v)}{\partial v^2}\Big ] \Big |_{(E_{1*};B_{H})}=\frac{-B_{H}Cu_{1*}^2v_{1*}(Cv_{1*}^2-3u_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^3},\\ a_{30}= & {} \frac{1}{6}\Big [\frac{\partial ^3 F_{1}(u, v)}{\partial u^3} \Big ] \Big |_{(E_{1*};B_{H})}=-\frac{1}{A}-\frac{B_{H}Cu_{1*}v_{1*}^3(u_{1*}^2-Cv_{1*}^2)}{3(u_{1*}^2+Cv_{1*}^2)^4},\\ a_{21}= & {} \frac{1}{2}\Big [\frac{\partial ^3 F_{1}(u, v)}{\partial u^2 \partial v} \Big ] \Big |_{(E_{1*};B_{H})}=-\frac{B_{H}Cv_{1*}^2(9u_{1*}^4-14Cu_{1*}^2v_{1*}^2+C^2v_{1*}^4)}{(u_{1*}^2+Cv_{1*}^2)^4},\\ a_{12}= & {} \frac{1}{2}\Big [\frac{\partial ^3 F_{1}(u, v)}{\partial u\partial v^2} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{B_{H}Cv_{1*}(6u_{1*}^5-16Cu_{1*}^3v_{1*}^2+2C^2u_{1*}v_{1*}^4)}{(u_{1*}^2+Cv_{1*}^2)^4},\\ a_{03}= & {} \frac{1}{6}\Big [\frac{\partial ^3 F_{1}(u, v)}{\partial v^3} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{-B_{H}Cu_{1*}^2(6Cu_{1*}^2v_{1*}^2-C^2v_{1*}^4-u_{1*}^4)}{(u_{1*}^2+Cv_{1*}^2)^4},\\ b_{20}= & {} \frac{1}{2}\Big [\frac{\partial ^2 F_{2}(u, v)}{\partial u^2} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{B_{H}Cv_{1*}^3(Cv_{1*}^2-3u_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^3},\\ b_{11}= & {} \Big [\frac{\partial ^2 F_{2}(u, v)}{\partial u \partial v} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{-2B_{H}Cu_{1*}v_{1*}^2(Cv_{1*}^2-3u_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^3},\\ b_{02}= & {} \frac{1}{2}\Big [\frac{\partial ^2 F_{2}(u, v)}{\partial v^2} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{B_{H}Cu_{1*}^2v_{1*}(Cv_{1*}^2-3u_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^3}-E, \\ b_{30}= & {} \frac{1}{6}\Big [\frac{\partial ^3 F_{2}(u, v)}{\partial u^3} \Big ] \Big |_{(E_{1*};B_{H})}=-\frac{1}{A}+\frac{4B_{H}Cu_{1*}v_{1*}^3(Cv_{1*}^2-u_{1*}^2)}{(u_{1*}^2+Cv_{1*}^2)^4},\\ b_{21}= & {} \frac{1}{2}\Big [\frac{\partial ^3 F_{2}(u, v)}{\partial u^2 \partial v} \Big ] \Big |_{(E_{1*};B_{H})}=-\frac{B_{H}Cv_{1*}^2(9u_{1*}^4-14Cu_{1*}^2v_{1*}^2+C^2v_{1*}^4)}{(u_{1*}^2+Cv_{1*}^2)^4}, \\ b_{12}= & {} \frac{1}{2}\Big [\frac{\partial ^3 F_{2}(u, v)}{\partial u \partial v^2} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{B_{H}Cv_{1*}(6u_{1*}^5-16Cu_{1*}^3v_{1*}^2+2C^2u_{1*}v_{1*}^4)}{(u_{1*}^2+Cv_{1*}^2)^4},\\ b_{03}= & {} \frac{1}{6}\Big [\frac{\partial ^3 F_{2}(u, v)}{\partial v^3} \Big ] \Big |_{(E_{1*};B_{H})}=\frac{B_{H}Cu_{1*}^2(6Cu_{1*}^2v_{1*}-C^2v_{1*}^4-u_{1*}^4)}{(u_{1*}^2+Cv_{1*}^2)^4}. \end{aligned}$$

We can calculate Lypunov first coefficient by using (13) as given below

$$\begin{aligned} l_{1}= & {} \frac{-3\pi }{2bD_{1}^{\frac{3}{2}}}\big [ac(a^2_{11}+a_{11}b_{02}+a_{02}b_{11})+ab(b_{11}^2+a_{20}b_{11}+a_{11}b_{02})\\&+\,c^2(a_{11}a_{02}+2a_{02}b_{02})\\&-\,2ac(b_{02}^2-a_{20}a_{02})-2ab(a_{20}^2-b_{20}b_{02})-b^2(2a_{20}b_{20}+b_{11}b_{20})+(bc-2a^2)\\&(b_{11}b_{02}-a_{11}a_{20})-(a^2+bc)\lbrace 3(cb_{03-}ba_{30})+2a(a_{21}+b_{12)}+(ca_{12}-bb_{21})\rbrace \big ], \end{aligned}$$

where \(D_1=ad-bc\). we get the expression for Lypunov first coefficient as:

$$\begin{aligned} l_{1}=\frac{3\pi }{2bD_1^\frac{3}{2}}L. \end{aligned}$$

where

$$\begin{aligned} L= & {} \big [ac(a^2_{11}+a_{11}b_{02}+a_{02}b_{11})+ab(b_{11}^2+a_{20}b_{11}+a_{11}b_{02})+c^2(a_{11}a_{02}+2a_{02}b_{02})\\&-2ac(b_{02}^2-a_{20}a_{02})-2ab(a_{20}^2-b_{20}b_{02})-b^2(2a_{20}b_{20}+b_{11}b_{20})+(bc-2a^2)\\&(b_{11}b_{02}-a_{11}a_{20})-(a^2+bc)\lbrace 3(cb_{03-}ba_{30})+2a(a_{21}+b_{12)}+(ca_{12}-bb_{21})\rbrace \big ]. \end{aligned}$$

The limit cycle is unstable for \(l_{1} >0\) and stable if \(l_{1} <0\). Therefore, the Hopf-bifurcation is subcritical if \(l_{1} >0\) and supercritical if \(l_{1} <0\).

C Appendix 3

Transversality conditions for Bogdanov-Takens bifurcation : We transform the equilibrium point \(E_{SN}^{*}\) to origin by \(x=u-u_{sn*}, y=v-v_{sn*}\) and we get

$$\begin{aligned} \dot{x_{1}}= & {} a'x_{1}+b'x_{2}-\frac{2\lambda _{1}Cu_{sn*}v_{sn*}^3x_{1}}{(u_{sn*}^2+Cv_{sn*}^2)^2}-\frac{\lambda _{1}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)x_{2}}{(u_{sn*}^2+Cv_{sn*}^2)^2}\\&+\,\frac{p_{11}}{2}x_{1}^2+p_{12}x_{1}x_{2} + \frac{p_{22}}{2}x_{2}^2+...,\\ \dot{x_{2}}= & {} c'x_{1}+d'x_{2}+\frac{2\lambda _{1}Cu_{sn*}v_{sn*}^3x_{1}}{(u_{sn*}^2+Cv_{sn*}^2)^2}+\left( \frac{\lambda _{1}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^2}-2\lambda _{2}v_{sn*} \right) x_{2} \\&+\,\frac{q_{11}}{2}x_{1}^2+q_{12}x_{1}x_{2}+\frac{q_{22}}{2}x_{2}^2+...., \end{aligned}$$

where \(a'\), \(b'\), \(c'\) ,\(d'\) are the element of the Jacobian matrix evaluated at an equilibrium point \(E_{SN}^{*}\) and \(p_{11}\), \(p_{12}\), \(p_{22}\), \(q_{11}\), \(q_{12}\), \(q_{22}\) are as follow

$$\begin{aligned} a'= & {} \Big [\frac{\partial F^{1}_{0}(u, v)}{\partial u}\Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{-3u_{sn*}^2}{A}+2u_{sn*}\left( \frac{1}{A}+1\right) \\&-1-\frac{2B_{BT}Cu_{sn*}v_{sn*}^3}{(u_{sn*}^2+Cv_{sn*}^2)^2},\\ b'= & {} \Big [\frac{\partial F^{1}_{0}(u, v)}{\partial v}\Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=-\frac{B_{BT}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^2},\\ c'= & {} \Big [\frac{\partial F^{2}_{0}(u, v)}{\partial u}\Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}= \frac{2B_{BT}Cu_{sn*}v_{sn*}^3}{(u_{sn*}^2+Cv_{sn*}^2)^2},\\ d'= & {} \Big [\frac{\partial F^{2}_{0}(u, v)}{\partial v}\Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{B_{BT}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)}{(u_{1*}^2+Cv_{sn*}^2)^2}-D-2E_{BT}v_{sn*},\\ p_{11}= & {} \Big [\frac{\partial ^2 F^{1}_{0}(u, v)}{\partial u^2} \Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{-6u_{sn*}}{A}+2\left( \frac{1}{A}+1\right) \\&-\frac{2B_{BT}Cv_{sn*}^3(Cv_{sn*}^2-3u_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^3},\\ p_{12}= & {} \Big [\frac{\partial ^2 F^{1}_{0}(u, v)}{\partial u \partial v} \Big ]\Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{2B_{BT}Cu_{sn*}v_{sn*}^2(Cv_{sn*}^2-3u_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^3},\\ p_{22}= & {} \Big [\frac{\partial ^2 F^{1}_{0}(u, v)}{\partial v^2}\Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{-2B_{BT}Cu_{sn*}^2v_{sn*}(Cv_{sn*}^2-3u_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^3}, \\ q_{11}= & {} \Big [\frac{\partial ^2 F^{2}_{0}(u, v)}{\partial u^2} \Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{2B_{BT}Cv_{sn*}^3(Cv_{sn*}^2-3u_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^3},\\ q_{12}= & {} \Big [\frac{\partial ^2 F^{2}_{0}(u, v)}{\partial u \partial v} \Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{-2B_{BT}Cu_{sn*}v_{sn*}^2(Cv_{sn*}^2-3u_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^3},\\ q_{22}= & {} \Big [\frac{\partial ^2 F^{2}_{0}(u, v)}{\partial v^2} \Big ] \Big |_{(E_{SN}^{*};B_{BT};E_{BT})}=\frac{2B_{BT}Cu_{sn*}^2v_{sn*}(Cv_{sn*}^2-3u_{sn*}^2)}{(u_{sn*}^2+Cv_{sn*}^2)^3}-2E_{BT}. \end{aligned}$$

Now we use affine transformation \(y_{1}=x\), \(y_{2}=a'x+b'y\) in (13) to get the new transformed system in \((y_{1}, y_{2})\) as:

$$\begin{aligned} \dot{y_{1}}= & {} y_{2}+\frac{u_{sn*}\lambda _{1}(a'u_{sn*}(u_{sn*}^2-Cv_{sn*}^2)-2b'Cv_{sn*}^3)}{b'(u_{sn*}^2+Cv_{sn*}^2)}y_{1}\\&-\frac{u_{sn*}^2\lambda _{1}(u_{sn*}^2-Cv_{sn*}^2)}{b'(u_{sn*}^2+Cv_{sn*}^2)}y_{2} +\Big (\frac{p_{11}}{2}-\frac{a'p_{12}}{b'} \\&+\frac{a'^2p_{22}}{2b'^2}\Big )y_{1}^2+\Big (\frac{p_{12}}{b'}-\frac{a'p_{22}}{b'^2}\Big )y_{1}y_{2} +\frac{p_{22}}{2b'^2}y_{2}^2. \\ \dot{y_{2}}= & {} (b'c'-a'd')y_{1}+(a'+d')y_{2}\\&+\Big (\frac{(a'-b')(a'\lambda _{1}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)-2\lambda _{1}b'Cu_{sn*}v_{sn*}^3 ) }{b'(u_{sn*}^2+Cv_{sn*}^2)} \\&+2a'\lambda _{2}v_{sn*}\Big ) y_{1} -\Big (2\lambda _{2}v_{sn*}+\frac{(a'-b')\lambda _{1}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)}{b'(u_{sn*}^2+Cv_{sn*}^2)}\Big )y_{2}\\&+\Big (\frac{1}{b'}(a'p_{12}+b'q_{12}) \\&-\frac{a'}{b'^2}(a'p_{22}+b'q_{22})\Big )y_{1}y_{2}+\Big (\frac{1}{2}(a'p_{11}+b'q_{11})\\&-\frac{a'}{b'}(a'p_{12}+b'q_{12})+\frac{a'^2}{2b'^2}(a'p_{22}\\&+b'q_{22})\Big )y_{1}^2+\Big (\frac{a'p_{22}+b'q_{22}}{2b'^2}\Big )y_{2}^2. \end{aligned}$$

which can be written as

$$\begin{aligned} \dot{y_{1}}= & {} y_{2}+\xi _{00}(\lambda )+\xi _{10}(\lambda )y_{1}+\xi _{01}(\lambda )y_{2}+\frac{1}{2}\xi _{20}(\lambda )y_{1}^2+\xi _{11}(\lambda )y_{1}y_{2}\\&+\frac{1}{2}\xi _{02}(\lambda )y_{2}^2+O_{1}(y_{1}y_{2}).\\ \dot{y_{2}}= & {} \eta _{00}(\lambda )+\eta _{10}(\lambda )y_{1}+\eta _{01}(\lambda )y_{2}+\frac{1}{2}\eta _{20}(\lambda )y_{1}^2+\eta _{11}(\lambda )y_{1}y_{2}\\&+\frac{1}{2}\eta _{02}(\lambda )y_{2}^2+O_{2}(y_{1}y_{2}).\\ \end{aligned}$$

where \(\lambda =(\lambda _{1}, \lambda _{2})\)

$$\begin{aligned} \xi _{00}(\lambda )= & {} 0, \xi _{10}(\lambda )=\frac{u_{sn*}\lambda _{1}(a'u_{sn*}(u_{sn*}^2-Cv_{sn*}^2)-2b'Cv_{sn*}^3)}{b'(u_{sn*}^2+Cv_{sn*}^2)},\\ \xi _{01}(\lambda )= & {} \frac{-u_{sn*}^2\lambda _{1}(u_{sn*}^2-Cv_{sn*}^2)}{b'(u_{sn*}^2+Cv_{sn*}^2)}\\ \xi _{20}(\lambda )= & {} 2\Big (\frac{p_{11}}{2}-\frac{a'p_{12}}{b'}+\frac{a'^2p_{22}}{2b'^2} \Big ), \xi _{11}(\lambda )=\Big (\frac{p_{12}}{b'}-\frac{a'p_{22}}{b'^2}\Big ),\\ \xi _{02}(\lambda )= & {} \frac{p_{22}}{b'^2}, \eta _{00}(\lambda )=0,\\ \eta _{10}(\lambda )= & {} (b'c'-a'd')\\&+\left( \frac{(a'-b')\lbrace a'\lambda _{1}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)-2\lambda _{1}b'Cu_{sn*}v_{sn*}^3 \rbrace }{b'(u_{sn*}^2+Cv_{sn*}^2)}+2a'\lambda _{2}v_{sn*}\right) \\ \eta _{01}(\lambda )= & {} (a'+d')-\Big (2\lambda _{2}v_{sn*}+\frac{(a'-b')\lambda _{1}u_{sn*}^2(u_{sn*}^2-Cv_{sn*}^2)}{b'(u_{sn*}^2+Cv_{sn*}^2)}\Big ) \\ \eta _{20}(\lambda )= & {} 2\Big (\frac{1}{2}(a'p_{11}+b'q_{11})-\frac{a'}{b'}(a'p_{12}+b'q_{12})+\frac{a'^2}{2b'^2}(a'p_{22}+b'q_{22})\Big ) \\ \eta _{11}(\lambda )= & {} \Big (\frac{1}{b'}(a'p_{12}+b'q_{12})-\frac{a'}{b'^2}(a'p_{22}+b'q_{22})\Big ), \eta _{02}(\lambda )=2\Big (\frac{a'p_{22}+b'q_{22}}{2b'^2}\Big ) \end{aligned}$$

Now

$$\begin{aligned} \xi _{20}(0)&=2\Big (\frac{p_{11}}{2}-\frac{a'p_{12}}{b'}+\frac{a'^2p_{22}}{2b'^2}\Big )_{\lambda =0},\nonumber \\ \eta _{11}(0)&=\Big (\frac{1}{b'}(a'p_{12}+b'q_{12})-\frac{a'}{b'^2}(a'p_{22}+b'q_{22}) \Big )_{\lambda =0},\nonumber \\ \eta _{20}(0)&=2\Big (\frac{1}{2}(a'p_{11}+b'q_{11})-\frac{a'}{b'}(a'p_{12}+b'q_{12})+\frac{a'^2}{2b'^2}(a'p_{22}+b'q_{22})\Big )_{\lambda =0}. \end{aligned}$$
(13)

To check the non degeneracy conditions of Bogdanov-Takens bifurcation we have to check the following quantities:

$$\begin{aligned} (i)\left[ \begin{array}{cc} a' &{} b'\\ c' &{} d' \end{array}\right] \ne 0_{2\times 2},\quad (ii) \xi _{20}(0)+ \eta _{11}(0)\ne 0, \quad (ii)\eta _{20}(0)\ne 0. \end{aligned}$$

The first condition is clearly satisfied. Also

$$\begin{aligned} \xi _{20}(0)+\eta _{11}(0)= & {} 2\Big (\frac{p_{11}}{2}-\frac{a'p_{12}}{b'}+\frac{a'^2p_{22}}{2b'^2}\Big )\\&+ \Big (\frac{1}{b'}(a'p_{12}+b'q_{12})-\frac{a'}{b'^2}(a'p_{22}+b'q_{22}) \Big ) \end{aligned}$$

D Appendix 4

Here we discuss the stability of the axial equilibrium point \(E_{0}(0,0)\) of the model (9)–(10). Now we transform the variables to new variables by replacing \(p=\frac{v}{u}\) and we get the following system

$$\begin{aligned} \frac{du}{dT}= & {} u(1-u)-\frac{B pu}{1+Cp^2} , \end{aligned}$$
(14)
$$\begin{aligned} \frac{dp}{dT}= & {} \frac{B p}{1+Cp^2}+\frac{B p^2}{1+Cp^2} -Dp-E p^2u-(1-u)p . \end{aligned}$$
(15)

We are interested here of the axial equilibrium points on the p-axis only. Axial equilibrium points on the p-axis are (0, 0) and \((0,\mu _{1,2})\), where \(\mu _{1,2}\) are the two roots of the quadratic equation

$$\begin{aligned}&\frac{B}{1+Cp^2}+\frac{B p}{1+Cp^2} -D-1=0 \\&\quad \Rightarrow p=\frac{B\pm \sqrt{B^2+4C(1+D)(B-D-1)}}{2C(1+D)} \end{aligned}$$

So \(\mu _{1}=\frac{B+ \sqrt{B^2+4C(1+D)(B-D-1)}}{2C(1+D)}\) and \(\mu _{2}=\frac{B- \sqrt{B^2+4C(1+D)(B-D-1)}}{2C(1+D)}\). Eigenvalues of the Jacobian matrix evaluated at (0, 0) is 1 and \(B-(1+D)\). Eigenvalues evaluated at \((0,\mu _{1,2})\) are \(-\frac{B \mu _{1,2}}{1+C\mu _{1,2}^2}\) and \(-D-1+\frac{B (1-C\mu _{1,2}^2+2 \mu _{1,2})}{(1+C\mu _{1,2}^2)^2}\). Now we discuss the different cases

  1. (i)

    If \((B-D-1)<0\) and \(B^2+4C(1+D)(B-D-1)<0\), then \((0,\mu _{1,2})\) do not exist and (0, 0) is saddle point.

  2. (ii)

    If \((B-D-1)<0\) and \(B^2+4C(1+D)(B-D-1)>0\), then \((0,\mu _{1,2})\) exist. (0, 0) is saddle point and \((0,\mu _{1,2})\) are stable points.

  3. (iii)

    If \((B-D-1)>0\) then \(B^2+4C(1+D)(B-D-1)>B^2>0\). (0, 0) is unstable and only \((0,\mu _{1})\) exists.

We construct a bifurcation diagram on \(B-E\) plane (see Fig. 10), which describes the above results and also the stability nature of origin. Two curves \((B-D-1)=0\) and \(B^2+4C(1+D)(B-D-1)=0\) divide the bifurcation diagram into three subregions and corresponding phase portraits are also shown in Fig. 11.

Hence, by blowing-down back (14)–(15), the line \(u=0\) is collapsed to the origin of the system (9)–(10). When \((0,\mu _{1,2})\) are stable, then invariant attracting curve is also mapped to an curve in the first quadrant which passes through the origin. So, the axial equilibrium point \(E_{0}(0,0)\) of the model (9)–(10) is stable at that region.

Fig. 10
figure 10

Bifurcation diagram in \(B-E\) plane of the axial equilibrium point \(E_{0}(0,0)\)

Fig. 11
figure 11

Stability of \(E_{0}(0,0)\) corresponding to Fig.10. a for region A1, b for region A2, (c) for region A3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P.S., Kumar, U., Garain, K. et al. Allee effect can simplify the dynamics of a prey-predator model. J. Appl. Math. Comput. 63, 739–770 (2020). https://doi.org/10.1007/s12190-020-01337-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01337-4

Keywords

Mathematics Subject Classification