Skip to main content
Log in

Optimized low-dispersion and low-dissipation two-derivative Runge–Kutta method for wave equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The paper is devoted to the optimization of the explicit two-derivative sixth-order Runge–Kutta method in order to obtain low dissipation and dispersion errors. The method is dependent on two free parameters, used for the optimization. The optimized method demonstrates the lowest dispersion error in comparison with other widely-used high-order Runge–Kutta methods for hyperbolic problems. The efficiency of the method is demonstrated on the solutions of problems for five linear and nonlinear partial differential equations by the method-of-lines. Spatial derivatives are discretized by finite differences and Petrov–Galerkin approximations. The work-precision and error—CPU time plots, as the dependence of CPU time on space grid resolution, are considered. Also, the optimized method compared with other two-derivative methods. In most examples, the optimized method has better properties, especially for the cases of computations with adaptive stepsize control at high accuracy. The lowest CPU time takes place for the optimized method, especially in the cases of fine space grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge–Kutta schemes with optimized stability regions. J. Comput. Phys. 231, 363–372 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  3. van der Houwen, P.J.: The development of Runge–Kutta methods for partial differential equations. Appl. Numer. Math. 20(3), 261–272 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90, 1–18 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Sommeijer, B.P., Verwer, J.G.: On stabilized integration for time-dependent PDEs. J. Comput. Phys. 224, 3–16 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge–Kutta methods with application to hyperbolic–parabolic equations. Numer. Math. 106, 303–334 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Martin-Vaquero, J., Janssen, B.: Second-order stabilized explicit Runge–Kutta methods for stiff problems. Comput. Phys. Commun. 180, 1802–1810 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Martin-Vaquero, J., Kleefeld, B.: Extrapolated stabilized explicit Runge–Kutta methods. J. Comput. Phys. 326, 141–155 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Martin-Vaquero, J., Kleefeld, A.: ESERK5: a fifth-order extrapolated stabilized explicit Runge–Kutta method. J. Comput. Appl. Math. 356, 22–36 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Komori, Y., Eremin, A., Burrage, K.: S-ROCK methods for stochastic delay differential equations with one fixed delay. J. Comput. Appl. Math. 353, 345–354 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Mead, J.L., Renaut, R.A.: Optimal Runge–Kutta methods for first order pseudospectral operators. J. Comput. Phys. 152, 404–419 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Allampalli, V., Hixon, R., Nallasamy, M., Sawyer, S.D.: High-accuracy large-step explicit Runge–Kutta (HALE-RK) schemes for computational aeroacoustics. J. Comput. Phys. 228, 3837–3850 (2009)

    MATH  Google Scholar 

  13. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Kulikovsky, A.G., Pogorelov, N.V., Semenov, A.Y.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Taylor and Francis Inc, Bosa Roca (2000)

    Google Scholar 

  15. Ilyin, O.: Nonlinear pressure–velocity waveforms in large arteries, shock waves and wave separation. Wave Motion 84, 56–67 (2019)

    MathSciNet  Google Scholar 

  16. Tinoco-Guerrero, G., Dominguez-Mota, F., Gaona-Arias, A., Ruiz-Zavala, M., Tinoco-Ruiz, J.: A stability analysis for a generalized finite-difference scheme applied to the pure advection equation. Math. Comput. Simul. 147, 293300 (2018)

    MathSciNet  Google Scholar 

  17. Williamson, J.H.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    MathSciNet  MATH  Google Scholar 

  18. Hu, F.Q., Hussaini, M.Y., Manthey, J.L.: Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics. J. Comput. Phys. 124, 177–191 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Stanescu, D., Habashi, W.G.: 2N-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 143, 674–681 (1998)

    MATH  Google Scholar 

  20. Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194, 194–214 (2004)

    MATH  Google Scholar 

  21. Berland, J., Bogey, C., Bailly, C.: Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm. Comput. Fluids 35, 1459–1463 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Calvo, M., Franco, J.M., Randez, L.: A new minimum storage Runge–Kutta scheme for computational acoustics. J. Comput. Phys. 201, 1–12 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Tselios, K., Simos, T.E.: Optimized Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Phys. Lett. A 363, 38–47 (2007)

    MATH  Google Scholar 

  24. Toulorge, T., Desmet, W.: CFL conditions for Runge–Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 230, 4657–4678 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Toulorge, T., Desmet, W.: Optimal Runge–Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems. J. Comput. Phys. 231, 2067–2091 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Ramboer, J., Broeckhoven, T., Smirnov, S., Lacor, C.: Optimization of time integration schemes coupled to spatial discretization for use in CAA applications. J. Comput. Phys. 213, 777–802 (2006)

    MATH  Google Scholar 

  27. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff problems. Springer Series in Computational Mathematics. Springer, Berlin (1993)

    MATH  Google Scholar 

  28. Turaci, M.O., Ozis, T.: Derivation of three-derivative Runge–Kutta methods. Numer. Algorithms 74(1), 247–265 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Gekeler, E., Widmann, R.: On the order conditions of Runge–Kutta methods with higher derivatives. Numer. Math. 50, 183–203 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Goeken, D., Johnson, O.: Runge–Kutta with higher order derivative approximations. Appl. Numer. Math. 34, 207–218 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Wu, X., Xia, J.: Extended Runge–Kutta-like formulae. Appl. Numer. Math. 56, 1584–1605 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge–Kutta methods. Numer. Algorithms 53, 171–194 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Fang, Y., You, X., Ming, Q.: Trigonometrically fitted two-derivative Runge–Kutta methods for solving oscillatory differential equations. Numer. Algorithms 65, 651–667 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Fang, Y., You, X., Ming, Q.: Exponentially fitted two-derivative Runge–Kutta methods for the Schrodinger equation. Int. J. Mod. Phys. C 24, 1350073 (2013)

    MathSciNet  Google Scholar 

  35. Fang, Y., You, X.: New optimized two-derivative Runge–Kutta type methods for solving the radial Schrodinger equation. J. Math. Chem. 52, 240–254 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65(3), 697–703 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Seal, D.C., Guclu, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  39. van der Houwen, P.J., Sommeijer, B.P.: Explicit Runge–Kutta (Nystrom) methods with reduced phase errors for computing of oscillating solutions. SIAM J. Numer. Anal. 24, 595–617 (1987)

    MathSciNet  MATH  Google Scholar 

  40. van de Vyver, H.: Stability and phase-lag analysis of explicit Runge–Kutta methods with variable coefficients for oscillatory problems. Comput. Phys. Commun. 173, 115–130 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Najafi-Yazdi, A., Mongeau, L.: A low-dispersion and low-dissipation implicit Runge–Kutta scheme. J. Comput. Phys. 233, 315–323 (2013)

    MathSciNet  Google Scholar 

  42. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    MATH  Google Scholar 

  43. Franco, J.M.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    MATH  Google Scholar 

  44. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London (1982)

    MATH  Google Scholar 

  45. Li, J.: Multi-step hybrid methods adapted to the numerical integration of oscillatory second-order systems. J. Appl. Math. Comput. 61, 155–184 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the sine–Gordon equation. Phys. Rev. Lett. 30(25), 1262–1264 (1973)

    MathSciNet  Google Scholar 

  47. Sanz-Serna, J.M., Christie, I.: Petrov–Galerkin methods for nonlinear dispersive waves. J. Comput. Phys. 39, 94–102 (1981)

    MathSciNet  MATH  Google Scholar 

  48. de Frutos, J., Sanz-Serna, J.M.: An easily implementable fourth-order method for the time integration of wave problems. J. Comput. Phys. 103, 160–168 (1992)

    MathSciNet  MATH  Google Scholar 

  49. Kalogiratou, Z., Monovasilis, T., Simos, T.E.: Construction of two derivative Runge–Kutta methods of order five. AIP Conf. Proc. 1863, 560092 (2017)

    Google Scholar 

  50. Kalogiratou, Z., Monovasilis, T., Simos, T.E.: Order conditions for two derivative Runge–Kutta methods up to order six. AIP Conf. Proc. 1906, 200020 (2017)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous referees for careful checking of the article and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasim V. Krivovichev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivovichev, G.V. Optimized low-dispersion and low-dissipation two-derivative Runge–Kutta method for wave equations. J. Appl. Math. Comput. 63, 787–811 (2020). https://doi.org/10.1007/s12190-020-01339-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01339-2

Keywords

Mathematics Subject Classification